Effects of different phosphate fertilizers on iron plaque amount on root surface and arsenic and cadmium uptake by rice grown in a limestone yellow loamy paddy soil
ZHAO Ting-ting1,2, WANG Chun-li3, ZHAO Xiu-lan1,2
1. College of Resources and Environment, Southwest University, Chongqing 400716, China; 2. Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China; 3. Chongqing Agricultural Ecology and Resource Protection Station, Chongqing 401120, China
Abstract:To find effective measures for safe utilization of arsenic (As) and cadmium (Cd) co-contaminated paddy soils, the effects of six phosphate fertilizers on the availability of As and Cd in a limestone yellow loamy paddy soil, the amounts of iron plaque on root surface and the uptake of As and Cd by rice were investigated using a pot experiment. The results showed that the values of soil pH increased significantly in the treatments of hydroxyapatite (HAP), bioenzyme active phosphate fertilizer (BCP) and calcium magnesium phosphate fertilizer (CMP), while they decreased significantly in the treatments of calcium dihydrogen phosphate (MCP), potassium dihydrogen phosphate (MKP) and calcium superphosphate (SSP), as compared with that of control. The application of HAP, MCP and CMP significantly reduced the availability of soil iron while the other three phosphate fertilizers had slight influence on it. The effect of phosphate fertilizers on the availability of As and Cd varied with fertilizers. HAP significantly decreased the contents of soil available Cd and As, while MCP and BCP significantly increased the content of soil available Cd but had no significant effect on soil available As, and SSP decreased the content of available Cd but increased the content of available As significantly. The amount of iron plaque in the root surface was increased by 0.6% -27.1% due to phosphate fertilizer application and was positively correlated with Cd and As in it (R2=0.555** and R2=0.525*, respectively). MCP, MKP and BCP significantly decreased the content of Cd and As, while HAP, SSP and CMP significantly reduced the content of Cd, but had no significant effect on the content of As in brown rice. Application of all phosphate fertilizers decreased the transfer coefficient of Cd from leaf to glume, MKP and MCP inhibited the transportation of As from root to stem, while BCP suppressed the transport of As from leaf to glume. It is concluded that the decrease of Cd and As in brown rice caused by phosphate fertilizers application was related to the increased iron plaque amount and the inhibition of Cd and As transportation within rice plant.
赵婷婷, 王春丽, 赵秀兰. 不同磷肥对水稻根表铁膜及砷镉吸收的影响——以石灰岩黄壤性水稻土为例[J]. 中国环境科学, 2021, 41(1): 297-306.
ZHAO Ting-ting, WANG Chun-li, ZHAO Xiu-lan. Effects of different phosphate fertilizers on iron plaque amount on root surface and arsenic and cadmium uptake by rice grown in a limestone yellow loamy paddy soil. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(1): 297-306.
Wang F Z P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant Soil, 2020,44(6):1-21.
[2]
王永壮,彭文凤,陈荣英,等.磷肥类型及其对土壤植物磷镉交互作用的影响[J]. 土壤与作物, 2019,8(2):139-149. Wang Y S, Peng W F, Chen R Y, et al. Types of phosphorus fertilizers and their influences on cadmium and phosphorus interactions in soil[J]. Soil and Plant, 2019,8(2):139-149.
[3]
Shen B, Wang X, Zhang Y, et al. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application[J]. Science of the Total Environment, 2020,7(11):135-229.
[4]
Noh Y D, Park H J, Kim K R, et al. Contrasting effect of phosphate on phytoavailability of arsenic and cadmium in soils supporting medicinal plants[J]. Applied Biological Chemistry, 2017,60(2):119-128.
[5]
李小方.重金属污染农田安全利用:目标、可选技术与可推广技术[J]. 中国生态农业学报, 2020,28(6):860-866. Li X F. Safe utilization of heavy metal-contaminated farmland:Goals, technical options, and extendable technology[J]. Chinese Journal of Ecological Agriculture, 2020,28(6):860-866.
[6]
孟龙,黄涂海,陈謇,等.镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019,45(3):263-271. Meng L, Hang T H, Chen Q, et al. Safe utilization of farmland soil with cadmium pollution:strategies and deliberations[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2019,45(3):263-271.
[7]
Li Q, Gao Y. Remediation of Cd-, Pband Cu-contaminated agricultural soils by phosphate fertilization and applying biochar[J]. Polish Journal of Environmental Studies, 2019,28(4):2697-2705.
[8]
Li J, Zhang P, Ye J, et al. Simultaneous in-situ remediation and fertilization of Cd-contaminated weak-alkaline farmland for wheat production[J]. Journal of Environmental Management, 2019,250(11):528-536.
[9]
余垚,朱丽娜,郭天亮,等.我国含磷肥料中镉和砷土壤累积风险分析[J]. 农业环境科学学报, 2018,37(7):1326-1331. Yu Y, Zhu L N, Guo T L, et al. Risk assessment of cadmium and arsenic in phosphate fertilizer[J]. Journal of Agriculture & Environment Sciences, 2018,37(7):1326-1331.
[10]
佟倩,张秀双,魏晓敏,等.硅肥磷肥配合施入对水稻产量及植株体内镉含量的影响[J]. 北方水稻, 2011,41(6):6-9. Tong Q, Zhang L S, Wei X M, et al. Effects of slag mucks and FCMP combined application on rice yield and Cd content in planting[J]. North Rice, 2011,41(6):6-9.
[11]
刘昭兵,纪雄辉,彭华,等.磷肥对土壤中镉的植物有效性影响及其机理[J]. 应用生态学报, 2012,23(6):1585-1590. Liu Z B, Ji X H, Peng H, et al. Effects of phosphorous fertilizers on phytoavailability of cadmium in its contaminated soil and related mechanisms[J]. Chinese Journal of Applied Ecology, 2012,23(6):1585-1590.
[12]
张秀,郭再华,杜爽爽,等.砷胁迫下水磷耦合对不同磷效率水稻根表铁膜及其各部位砷含量的影响[J]. 生态毒理学报, 2013,8(2):172-177. Zhang X, Guo Z H, Du S S, et al. Couple effect of water and phosphorus on iron plaque and As concentration in different organs of different P efficiency rices under As-stress conditions[J]. Asian Journal of Ecotoxicology, 2013,8(2):172-177.
[13]
Srivastava S, Srivastava S, Bist V, et al. Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.)[J]. Journal of Hazardous Materials, 2018,35(1):177-187.
[14]
张琳,卢瑛.磷硅肥配施抑制华南地区水稻籽粒砷积累的效果[J]. 农业环境科学学报, 2016,35(6):1042-1047. Zhang L, Lu Y. Effects of phosphorus and silicon applications on arsenic accumulation in rice grains in South China[J]. Journal of Agriculture & Environment Sciences, 2016,35(6):1042-1047.
[15]
张秀,郭再华,杜爽爽,等.砷胁迫下水磷耦合对不同磷效率水稻根表铁膜及其各部位砷含量的影响[J]. 生态毒理学报, 2013,8(2):172-177. Zhang X, Guo Z H, Du S S, et al. Couple effect of water and phosphorus on iron plaque and As concentration in different organs of different P efficiency rices under As-stress conditions[J]. Asian Journal of Ecotoxicology, 2013,8(2):172-177.
[16]
陈青云,张晶,谭启玲,等.4种磷肥对土壤-叶菜类蔬菜系统中镉生物有效性的影响[J]. 华中农业大学学报, 2013,32(1):78-82. Chen Q Y, Zhang J, Tan Q L, et al. Effects of four phosphorus fertilizers on cadmium bioavailability in soil-leaf vegetables systems[J]. Journal of Huazhong Agricultural University. 2013,32(1):78-82.
[17]
耿志席,刘小虎,李莲芳,等.磷肥施用对土壤中砷生物有效性的影响[J]. 农业环境科学学报, 2009,28(11):2338-2342. Geng Z X, Liu X H, Li L F, et al. Effects of phosphorus fertilization on the bioavailability of arsenic in soils[J]. Journal of Agriculture & Environment Sciences, 2009,28(11):2338-2342.
[18]
Honma T, Ohba H, Kaneko-Kadokura A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology, 2016,50(8):4178-4185.
[19]
刘昭兵,纪雄辉,彭华,等.磷肥对土壤中镉的植物有效性影响及其机理[J]. 应用生态学报, 2012,23(6):1585-1590. Liu Z B, Ji X H, Peng H, et al. Effects of phosphorous fertilizers on phytoavailability of cadmium in its contaminated soil and related mechanisms[J]. Chinese Journal of Applied Ecology, 2012,23(6):1585-1590.
[20]
Peng C, Chen S, Shen C, et al. Iron plaque:A barrier layer to the uptake and translocation of copper oxide nanoparticles by rice plants[J]. Environmental Science & Technology, 2018,52(21):12244-12254.
[21]
于金邕.油菜素内酯对水稻根表铁膜形成和水稻砷镉吸收的影响[D]. 福州:福建农林大学, 2019. Yu J Y. Effects of brassinolide on iron plaque and its influence about the absorbtion of arsenic and cadmium[D]. Fuzhou:Province:Fujian Agriculture and Forestry University, 2019.
[22]
Zhao Y, Zhang C, Wang C, et al. Increasing phosphate inhibits cadmium uptake in plants and promotes synthesis of amino acids in grains of rice[J]. Environmental Pollution, 2020,257(2):496-504.
[23]
田茂苑.贵州喀斯特地区不同水稻土镉污染风险格局划分[D]. 贵阳:贵州大学, 2019. Tian M Y. Classification of cadmium pollution risk patterns of different paddy soils in karst area of Guizhou[D]. Guiyang:Guizhou University, 2019.
[24]
汪花,刘秀明,刘方,等.喀斯特地区小尺度农业土壤砷的空间分布及污染评价[J]. 环境科学, 2019,40(6):2895-2903. Wang H, Liu X M, Liu F, et al. Spatial distribution and pollution assessment of As at a small scale in agricultural soils of the karst region[J]. Environmental Science, 2019,40(6):2895-2903.
[25]
邓廷飞.贵州黄壤性水稻土主要发生特征与诊断特性[D]. 贵阳:贵州大学, 2016. Deng T F. The major genetic character and diagnostic characteristic of yellow paddy soil in Guizhou[D]. Guiyang:Guizhou University, 2016.
[26]
夏吉成.典型喀斯特高砷背景地区土壤风化过程中砷形态转化的XANES研究[C]. 南京:中国土壤学会, 2019. Xia J C. XANES study on morphological transformation of arsenic during soil weathering in typical karst areas with high arsenic content[C]. Nanjing:Soil Science Society of China, 2019.
[27]
吕贻忠.土壤学[M]. 北京:中国农业出版社, 2006:254-255. Lv Y Z. Soil science[M]. Beijing:China Agriculture Press, 2006:254-255.
[28]
Xu D, Xu J, He Y, et al. Effect of iron plaque formation on phosphorus accumulation and availability in the rhizosphere of wetland plants[J]. Water, Air, and Soil Pollution, 2009,200(1-4):79-87.
[29]
姚海兴.湿地植物根表铁膜研究进展[J]. 生态学杂志, 2009, 28(11):2374-2380. Yao H X. Iron plaques on wetland plant root surface:A review[J]. Chinese Journal of Ecology, 2009,28(11):2374-2380.
[30]
雷鸣.两种含磷物质对土壤重金属和砷向水稻迁移的影响[D]. 长沙:中南林业科技大学, 2014. Lei M. Effects of two phosphorus-containing substances on migration of heavy metals and arsenic in soil to rice[D]. Changsha:Central South University of Forestry and Technology, 2014.
[31]
GB/T23739-2009土壤质量有效态铅和镉的测定原子吸收法[S]. GB/T23739-2009 Soil quality-Analysis of available lead and cadmium contents in soils-Atomic absorption spectrometry[S].
[32]
谢伟,谭向平,田海霞,等.土壤水分对稻田土壤有效砷及碱性磷酸酶活性影响[J]. 中国环境科学, 2016,36(8):2418-2424. Xie W, Tan X P, Tian H X, et al. Effects of soil moisture on available arsenic and alkaline phosphatase activity in paddy soil[J]. China Environmental Science, 2016,36(8):2418-2424.
[33]
鲁如坤.土壤农业化学分析方法[M]. 北京:中国农业出版社, 1999:477-479. Lu R K. Methods of Soil Agricultural Chemical Analysis[M]. Beijing:China Agriculture Press, 1999:477-479.
[34]
耿志席,刘小虎,李莲芳,等.磷肥施用对土壤中砷生物有效性的影响[J]. 农业环境科学学报, 2009,28(11):2338-2342. Geng Z X, Liu X H, Li L F, et al. Effects of phosphorus fertilization on the bioavailability of arsenic in soils[J]. Journal of Agriculture & Environment Sciences, 2009,28(11):2338-2342.
[35]
GB2762-2017食品安全国家标准食品中污染物限量[S]. GB2762-2017 National standards for food safety-Contaminant limits in food[S].
[36]
Yang L, Huang B, Hu W, et al. The impact of greenhouse vegetable farming duration and soil types on phytoavailability of heavy metals and their health risk in eastern China[J]. Chemosphere, 2014,10(3):121-130.
[37]
Hong C O, Owens V N, Kim Y G, et al. Soil pH effect on phosphate induced cadmium precipitation in arable soil[J]. Bull Environ Contam Toxicol, 2014,93(1):101-105.
[38]
金亮,周健民,王火焰,等.石灰性土壤肥际磷酸一钙的转化及肥料磷的迁移[J]. 土壤, 2009,41(1):72-78. Jin L, Zhou J M, Wang H Y, et al. Transformation and translocation of fertilizer-P with monocalcium phosphate monohydrate application in fertisphere of calcareous soil[J]. Soil, 2009,41(1):72-78.
[39]
地里拜尔.苏里坦,艾尼瓦尔.买买提,蔺娟.土壤中铁锰的形态分布及其有效性研究[J]. 生态学杂志, 2006,25(2):155-160. Di L B E, Ai N W E, Lin J. Soil iron-and manganese forms and their availability to plants[J]. Chinese Journal of Ecology, 2006,25(2):155160.
[40]
刘铮.微量元素的农业化学[M]. 北京:农业出版社, 1991:261262. Liu Z. Agricultural chemistry of microelements[M]. Beijing:Agricultural Press, 1991:261-262.
[41]
Olsen S R. Micronutrient interactions[M]. Micronutrients in agriculture, Madison, Wisconsin, USA:Soil Science Society of America, 1972:243-264.
[42]
Dhaliwal S S, Mandal A. Transformations and availability of iron to wheat as influenced by phosphorus and manganese fertilization in a typic haplustept soil[J]. Communications in Soil Science and Plant Analysis, 2019,50(9):1081-1092.
[43]
Ji Y, Luo W, Lu G, et al. Effect of phosphate on amorphous iron mineral generation and arsenic behavior in paddy soils[J]. Science of the Total Environment, 2019,65(7):644-656.
[44]
Du Y, Wang X, Ji X, et al. Effectiveness and potential risk of CaO application in Cd-contaminated paddy soil[J]. Chemosphere, 2018,20(4):130-139.
[45]
Singh S B, Srivastava P K. Bioavailability of arsenic in agricultural soils under the influence of different soil properties[J]. SN Applied Sciences, 2020,2(2):15-32.
[46]
王英杰,邹佳玲,杨文弢,等.组配改良剂对稻田系统Pb、Cd和As生物有效性的协同调控[J]. 环境科学, 2016,37(10):4004-4010. Wang Y J, Zou J L, Yang W B, et al. Coordinated regulation of compound improver to the bio-availability of Pb, Cd and As in paddy field system[J]. Environmental Science, 2016,37(10):4004-4010.
[47]
Goh K H, Lim T T. Geochemistry of inorganic arsenic and selenium in a tropical soil:effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption[J]. Chemosphere, 2004,55(6):849859.
[48]
徐明岗.磷酸盐修复重金属污染土壤的研究进展[J]. 生态学报, 2007,27(7):3043-3050. Xu M G. Research progress of phosphate remediation of soil contaminated by heavy metals[J]. Acta Ecological Sinica, 2007,27(7):3043-3050.
[49]
刘昭兵,纪雄辉,彭华,等.磷肥对土壤中镉的植物有效性影响及其机理[J]. 应用生态学报, 2012,23(6):1585-1590. Liu Z B, Ji X H, Peng H, et al. Effects of phosphate fertilizer on plant availability of cadmium in soil and its mechanism[J]. Chinese Journal of Applied Ecology, 2012,23(6):1585-1590.
[50]
Ahmad M, Hashimoto Y, Moon D H, et al. Immobilization of lead in a Korean military shooting range soil using eggshell waste:An integrated mechanistic approach[J]. Journal of Hazadous Materials, 2012,20(9):392-401.
[51]
梁美娜,王敦球,朱义年,等.羟基磷灰石/蔗渣炭复合吸附剂的制备及其对As(Ⅴ)的吸附机理[J]. 环境科学研究, 2017,30(4):607-614. Liang M N, Wang D Q, Zhu Y N, et al. Preparation of composite absorbent of hydroxyapatite and bagasse carbon and its adsorption mechanism for arsenic[J]. Research of Environmental Sciences, 2017, 30(4):607-614.
[52]
Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants[J]. Biochimie, 2006,88(11):17071719.
[53]
薛喜枚,朱永官.土壤中砷的生物转化及砷与抗生素抗性的关联[J]. 土壤学报, 2019,56(4):763-772. Xue X M, Zhu Y G. Biotransformation of arsenic in soil and its association with antibiotic resistance[J]. Acta Pedologica Sinica, 2019,56(4):763-772.
[54]
Khan N S B B N. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants[J]. Advances in Agronomy, 2016, 13(8):1-96.
[55]
Ding Y, Wang Z, Ren M, et al. Iron and callose homeostatic regulation in rice roots under low phosphorus[J]. BMC Plant Biology, 2018, 18(4):326-340.
[56]
刘春英.湿地植物根表铁膜研究进展[J]. 生态学报, 2014,34(10):2470-2480. Liu C Y. Advances in the study of iron plaque in the roots of wetland plants[J]. Acta Ecological Sinica, 2014,34(10):2470-2480.
[57]
Zhao Y, Zhang C, Wang C, et al. Increasing phosphate inhibits cadmium uptake in plants and promotes synthesis of amino acids in grains of rice[J]. Environmental Pollution, 2020,25(7):113-496.
[58]
Mao P, Zhuang P, Li F, et al. Phosphate addition diminishes the efficacy of wollastonite in decreasing Cd uptake by rice (Oryza sativa L.) in paddy soil[J]. Science of the Total Environment, 2019, 68(7):441-450.
[59]
王智怡,李文静,邢承华,等.铁膜和磷作用对水稻根尖细胞壁耐铝性的影响[J]. 农业环境科学学报, 2019,38(12):2681-2688. Wang Z Y, Li W J, Xing C H, et al. Effects of iron plaque and phosphorus on Al resistance of rice root tip cell wall[J]. Journal of Agriculture & Environment Science, 2019,38(12):2681-2688.
[60]
Li R, Zhou Z, Zhang Y, et al. Uptake and accumulation characteristics of arsenic and iron plaque in rice at different growth stages[J]. Communications in Soil Science and Plant Analysis, 2015,46(19):2509-2522.
[61]
雷鸣,曾敏,廖柏寒,等.含磷物质对水稻吸收土壤砷的影响[J]. 环境科学, 2014,35(8):3149-3154. Lei M, Zeng M, Liao B H, et al. Effects of phosphorus content on arsenic uptake by rice[J]. Environmental Science, 2014,35(8):31493154.
[62]
Liu H, Zhang J L, Zhang F. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture[J]. Environmental and Experimental Botany, 2007,59(3):314320.
[63]
胡莹,黄益宗,黄艳超,等.不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响[J]. 农业环境科学学报, 2013,32(3):432-437. Hu Y, Huang Y Z, Huang Y C, et al. Formation of iron plaque on rice root at different growth stages and its effect on absorption and transportation of Cd in rice[J]. Journal of Agriculture & Environment Science, 2013,32(3):432-437.
[64]
李家兴.不同品种水稻根部铁膜形成及其对铁磷与砷吸收之影响[C]. 南京:中国土壤学会, 2012. Li J X. Formation of iron plaque of different rice varieties and its effect on absorption of iron, phosphorus and arsenic[C]. Nanjing:Soil Science Society of China, 2012.