The effects of water eutrophication and species invasion on the food web of Xingyun Lake
DENG Su-yan1, GUO Wen2, WEN Wen-wen1, WANG Ming-guo3, HUANG Lin-pei1, CHEN Zi-dong1, CHEN Guang-jie1, ZHAO Shuai-ying1
1. Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China; 2. Meteorological Bureau of Fengning Manchu Autonomous County, Chengde 068350, China; 3. Yunnan Geological Mine Mapping Academy Co., Ltd, Kunming 650217, China
Abstract:Samples of lake water quality, primary producer phytoplankton (pelagic carbon source), submerged plants (benthic carbon source), terrestrial organic matter (terrestrial sources), and consumer zooplankton, benthos and fishes were systematically collected from Xingyun Lake, a shallow and eutrophic lake of Yunnan, in 2019~2020. These samples were analyzed to identify the characteristics of carbon and nitrogen stable isotope composition of primary producers and consumers, and to quantify the food sources of consumers using the MixSIAR model. We tried to find out the best model for constructing the food web structure applicable to this shallow and eutrophic lake by a comparison of the outputs from three calculation models, with the isotopic baseline of primary producer (Model A), carbon source contribution weight (Model B), and primary consumer (Model C), and thus revealed the possible effects of eutrophication and invasive alien species on the lake food web. The contributions of planktonic, benthic and terrestrial carbon source to consumers were 77.3%, 12.2% and 10.5%, respectively. Moreover, no significant difference in the carbon isotope signals of fishes between littoral zone and pelagic zone indicated that planktonic carbon source was the most important food source of consumers in eutrophic lakes, and its energy flow of food webs was dominated by planktonic pathway. For fishes of different diets, omnivorous fish had wide dietary sources and carnivorous fish had a higher trophic level, separating their core ecological niches. The core ecological niche of omnivorous fish (3.79) was higher than that of carnivorous fish (2.46), indicating that omnivorous fish had higher adaptability. The trophic level results calculated by model B were more consistent with the food habits of consumers than other two models, and the model B could be selected as the best model applied to the calculation of trophic level of consumers in Xingyun Lake. The results of Model B showed that the food chain length of Xingyun Lake was 3.73, and its top predator was Silurus graham, followed by the invasive species Neosalanx taihuensis (3.37), competing with Anabarilius andersoni (3.01) in terms of food and survival space. This study concluded that the alterations of material sources and energy flows caused by the eutrophication as well as the introduction of invasive species were the main reasons for the decline of indigenous fish resources, the reduction of biodiversity in the food web structure, and the weakening of ecosystem functions in Xingyun Lake.
邓素炎, 郭雯, 温雯雯, 王明果, 黄林培, 陈子栋, 陈光杰, 赵帅营. 水体富营养化及物种入侵对星云湖食物网的影响[J]. 中国环境科学, 2024, 44(2): 932-943.
DENG Su-yan, GUO Wen, WEN Wen-wen, WANG Ming-guo, HUANG Lin-pei, CHEN Zi-dong, CHEN Guang-jie, ZHAO Shuai-ying. The effects of water eutrophication and species invasion on the food web of Xingyun Lake. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(2): 932-943.
王少鹏.食物网结构与功能:理论进展与展望[J]. 生物多样性, 2020,28(11):1391-1404. Wang S P. Food web structure and functioning:Theoretical advances and outlook [J]. Biodiversity Science, 2020,28(11):1391-1404.
[2]
Sharpe D M T, De León L F, González R, et al. Tropical fish community does not recover 45years after predator introduction [J]. Ecology, 2017,98(2):412-424.
[3]
Izaguirre I, Lancelotti J, Saad J F, et al. Influence of fish introduction and water level decrease on lakes of the arid Patagonian plateaus with importance for biodiversity conservation [J]. Global Ecology and Conservation, 2018,14:e00391.
[4]
秦珊,崔建升,申立娜,等.富营养化对湖泊消费者群落碳源和氮源的影响——以白洋淀为例[J]. 湖泊科学, 2020,32(6):1657-1670. Qin S, Cui J S, Shen L N, et al. The influences of eutrophication for the carbon and nitrogen sources for aquatic consumer communities-A case study in Lake Baiyangdian [J]. Journal of Lake Sciences, 2020, 32(6):1657-1670.
[5]
巴家文,陈大庆.三峡库区的入侵鱼类及库区蓄水对外来鱼类入侵的影响初探[J]. 湖泊科学, 2012,24(2):185-189. Ba J W, Chen D Q. Invasive fishes in Three Gorges Reservoir area and preliminary study on effects of fish invasion owing to impoundment [J]. Journal of Lake Sciences, 2012,24(2):185-189.
[6]
韩广轩,牛振国,栾兆擎,等.河口三角洲湿地健康生态圈构建:理论与方法[J]. 应用生态学报, 2018,29(8):2787-2796. Han G X, Niu Z G, Niu Z G, et al. Construction of healthy wetland ecosphere in estuarine delta:Theory and method [J]. Chinese Journal of Applied Ecology, 2018,29(8):2787-2796.
[7]
Ridzuan D S, Rawi C S M d, Hamid S A, et al. Determination of food sources and trophic position in Malaysian tropical highland streams using carbon and nitrogen stable isotopes [J]. Acta Ecologica Sinica, 2017,37(2):97-104.
[8]
杨凡,印瑞,范江涛,等.中街山列岛海域食物网结构初步研究及主要消费者潜在碳源分析[J]. 海洋学报, 2023,45(1):25-37. Yang F, Yin R, Fan J T, et al. Preliminary study on the food web and potential carbon sources of main consumers in Zhongjieshan Islands sea area in Zhoushan, Zhejiang [J]. Haiyang Xuebao, 2023,45(1):25-37.
[9]
李峥,魏廷,马原野,等.基于稳定同位素技术的南湾水库食物网结构研究[J]. 水产学杂志, 2021,34(4):15-21. Li Z, Wei T, Ma Y Y, et al. Food Web Structure in Nanwan Reservoir Based on Analysis of Carbon and Nitrogen Stable Isotopes [J]. Chinese Journal of Fisheries, 2021,34(4):15-21.
[10]
Denis J, Bouaziz R, Draredja B, et al. Fish food-web structure of a southern Mediterranean lagoon (El Mellah Lagoon, Algeria):what we can learn from stable isotope analysis [J]. Mediterranean Marine Science, 2023,24(2):211-228.
[11]
Bearhop S, Hilton G M, Votier S C, et al. Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat [J]. Proceedings of the Royal Society of London. Series B:Biological Sciences, 2004,271(4):S215-S218.
[12]
Layman C A, Quattrochi J P, Peyer C M, et al. Niche width collapse in a resilient top predator following ecosystem fragmentation [J]. Ecology Letters, 2007,10(10):937-944.
[13]
温周瑞,熊鹰,徐军,等.太湖贡湖湾食物网特征研究[J]. 水生生物学报, 2016,40(1):131-138. Wen Z R, Xiong Y, Xu J, et al. The studies on the structures of the food web and the trophic relationships in the Gonghu Bay of the Taihu Lake [J]. Acta Hydrobiologica Sinica, 2016,40(1):131-138.
[14]
陈俊伊,王康,郭钰伦,等.基于稳定同位素技术的保安湖食物网结构特征研究[J]. 水生生物学报, 2022,46(5):699-706. Chen J Y, Wang K, Guo Y L, et al. Food web structure of the Bao'an Lake based on stable carbon and nitrogen isotopes analysis [J]. Acta Hydrobiologica Sinica, 2022,46(5):699-706.
[15]
Xing M, Wang Q, Li X, et al. Selection of keystone species based on stable carbon and nitrogen isotopes to construct a typical food web on the shore of Xingkai Lake, China [J]. Ecological Indicators, 2021,132:108263.
[16]
张传鑫,陈静,纪莹璐,等.基于碳氮稳定同位素技术的小清河口邻近海域底栖食物网结构研究[J]. 海洋学报, 2022,44(1):89-100. Zhang C X, Chen J, Ji Y L, et al. Benthic food web structure of Xiaoqing River Estuary adjacent sea area revealed by carbon and nitrogen stable isotope analysis [J]. Haiyang Xuebao, 2022,44(1):89-100.
[17]
胡金润.基于稳定同位素和脂肪酸组成的抚仙湖食物网结构和有机碳源分析[D]. 广州:暨南大学, 2015. Hu J R. Study on the food web structure and sources of organic carbon in Lake Fuxian based on stable isotopes and fatty acid composition [D]. Guangzhou:JiNan University, 2015.
[18]
尚坤钰,姜明,林鹏程,等.江湖阻隔对长江中下游湖泊鱼类群落分类多样性的影响[J]. 水生生物学报, 2023,47(1):133-150. Shang K Y, Jiang M, Lin P C, et al. River-lake disconnection on fish taxonomic distinctness in lakes from middle and lower reaches of the Yangtze river [J]. Acta Hydrobiologica Sinica, 2023,47(1):133-150.
[19]
Liu X, Wang H. Effects of loss of lateral hydrological connectivity on fish functional diversity:Connectivity and Fish Diversity [J]. Conservation Biology, 2018,32(6):1336-1345.
[20]
陈小林,陈光杰,刘园园,等.云南45个湖泊硅藻-总磷转换函数及其定量重建评价[J]. 湖泊科学, 2023,35(1):88-104. Chen X L, Chen G J, Liu Y Y, et al. Evaluation of the quantitative between diatom communities and total phosphorus(TP) in 45lakes and their applications for TP reconstruction in Yunnan, South-west China [J]. Journal of Lake Sciences, 2023,35(1):88-104.
[21]
袁刚,茹辉军,刘学勤.2007~2008年云南高原湖泊鱼类多样性与资源现状[J]. 湖泊科学, 2010,22(6):837-841. Yuan G, Ru H J, Liu X Q. Fish diversity and fishery resources in lakes of Yunnan Plateau during 2007~2008[J]. Journal of Lake Sciences, 2010,22(6):837-841.
[22]
陈银瑞,杨君兴,李再云.云南鱼类多样性和面临的危机[J]. 生物多样性, 1998,6(4):272-277. Chen Y R, Yang J X, Li Z Y. The diversity and present status of fishes in Yunnan Province [J]. Chinese Biodiversity, 1998,6(4):272-277.
[23]
周伟.云南湿地生态系统鱼类物种濒危机制初探[J]. 生物多样性, 2000,8(2):163-168. Zhou W. A preliminary study on endangerment mechanism of freshwater fish species in wetland ecosystem of Yunnan [J]. Chinese Biodiversity, 2000,8(2):163-168.
[24]
Zhang W, Ming Q, Shi Z, et al. Lake sediment records on climate change and human activities in the Xingyun Lake Catchment, SW China [J]. Plos One, 2014,9(7):e102167.
[25]
中国科学院南京地理与湖泊研究所编.中国湖泊调查报告[M]. 北京:科学出版社, 2019:508-509. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Lake Survey Report in China [M]. Beijing:Science Press, 2019:508-509.
[26]
Xu J, Zhang M. Primary consumers as bioindicator of nitrogen pollution in lake planktonic and benthic food webs [J]. Ecological Indicators, 2012,14(1):189-196.
[27]
Taipale SJ, Vuorio K, Aalto SL, et al. Eutrophication reduces the nutritional value of phytoplankton in boreal lakes [J]. Environmental Research, 2019,179:108836.
[28]
张四春.星云湖土著鱼类保护与利用[M]. 昆明:云南人民出版社, 2018:21-33. Zhang S C. Protection and utilization of indigenous fish in Xingyun Lake [M]. Kunming:Yunnan People's Publishing House, 2018:21-33.
[29]
官鹏,黄桂香.星云湖渔业增殖放流现状及建议[J]. 现代农业科技, 2014,43(18):250,256. Guang P, Huang G X. Current situation and suggestion of fishery increase and release in Xingyun Lake [J]. Modern Agricultural Science and Technology, 2014(18):250,256.
[30]
陈子栋,黄林培,陈丽,等.云南4个湖泊浮游生物碳、氮稳定同位素的季节变化及其影响因子[J]. 湖泊科学, 2021,33(3):761-773. Chen Z D, Huang L P, Chen L, et al. Seasonal variation and driving factors of carbon and nitrogen stable isotope values of plankton in four lakes of Yunnan Province [J]. Journal of Lake Sciences, 2021,33(3):761-773.
[31]
陈蓉,王明果,黄林培,等.滇池浮游植物碳氮同位素时空分布特征及其影响因子分析[J]. 中国环境科学, 2022,42(2):843-853. Chen R, Wang M G, Huang L P, Spatio-temporal distribution and influencing factors of stable carbon and nitrogen isotopes of phytoplankton in Dianchi Lake [J]. China Environmental Science, 2022,42(2):843-853.
[32]
王旭,郭雯,王明果,等.人类活动影响下异龙湖浮游植物碳氮稳定同位素变化特征[J]. 中国环境科学, 2023,43(6):3087-3099. Wang X, Guo W, Wang M G, et al. Pattern in changes of carbon and nitrogen stable isotopes of phytoplankton in Yilong Lake under the influence of human activities [J]. China Environmental Science, 2023, 43(6):3087-3099.
[33]
黄尚务,吴清江,易伯鲁,等.黑龙江流域鲤鱼的繁殖、食性和生长[J]. 水生生物学集刊, 1959,3(2):210-214. Huang S W, Wu J C, Yi B L, et al. Reproduction, feeding and growth of Cyprinus carpio in Heilongjiang basin [J]. Acta Hydrobiologica Sinica, 1959,3(2):210-214.
[34]
郭家,李朝品,王克霞.淮河水系淮南段医学贝类调查及耳萝卜螺生态的研究[J]. 中国病原生物学杂志, 2007,2(2):144-146. Guo J, Li C P, Wang K X. Investigation on the medical Mollusca and ecological study on Radixzuricularia in Huainan section of the Huaihe River [J]. Journal of Pathogen Biology, 2007,2(2):144-146.
[35]
张志华,杨秀.龙虱养殖技术[J]. 黑龙江水产, 2010,136(2):9-10. Zhang Z H, Yang X. Breeding technology of Dytiscidae [J]. Northern Chinese Fisheries, 2010,136(2):9-10.
[36]
褚新洛.云南鱼类志.上册[M]. 北京:科学出版社, 1989:69-70,350-351. Zhu X L. Annals of Yunnan Fish. Volume Ⅰ[M]. Beijing:Science Press, 1989:69-70,350-351.
[37]
李桂峰.珠江鱼类图鉴[M]. 北京:科学出版社, 2018:69. Li G F. Fishes of the Pearl River [M]. Beijing:Science Press, 2018:69.
[38]
褚新洛.云南鱼类志.下册[M]. 北京:科学出版社, 1990:5-6,233-234. Zhu X L. Annals of Yunnan Fish. Volume II [M]. Beijing:Science Press, 1990:5-6,233-234.
[39]
褚新洛,郑葆珊,戴定远.中国动物志:硬骨鱼纲,鲇形目[M]. 北京:科学出版社, 1999:85-86. Zhu X L, Zhen B S, Dai D Y. Zoology of China:Osteichthyoidea, Silurus [M]. Beijing:Science Press, 1999:85-86.
[40]
马晓利,刘存歧,刘录三,等.基于鱼类食性的白洋淀食物网研究[J]. 水生态学杂志, 2011,32(4):85-90. Ma X L, Liu C Q, Liu L S, et al. Study on the food web of fish in Baiyangdian Lake based diet analysis [J]. Journal of Hydroecology, 2011,32(4):85-90.
[41]
Costantini M L, Carlino P, Calizza E, et al. The role of alien fish (the centrarchid Micropterus salmoides) in lake food webs highlighted by stable isotope analysis [J]. Freshwater Biology, 2018,63(9):1130-1142.
[42]
郭雯,黄林培,王明果,等.不同组织碳、氮元素含量和同位素分馏特征研究——以抚仙湖草鱼、鱇浪白鱼为例[J]. 中国环境科学, 2022,42(1):345-355. Guo W, Huang L P, Wang M G, et al. Carbon and nitrogen contents and isotopic fractionation in different tissues of Ctenopharyngodon idellus and Anabarilius grahami in Fuxian Lake [J]. China Environmental Science, 2022,42(1):345-355.
[43]
Vander Zanden M J, Casselman J M, Rasmussen J B. Stable isotope evidence for the food web consequences of species invasions in lakes [J]. Nature, 1999,401(6752):464-467.
[44]
梁红,黄林培,陈光杰,等.滇东湖泊水生植物和浮游生物碳、氮稳定同位素与元素组成特征[J]. 湖泊科学, 2018,30(5):1400-1412. Liang H, Huang L P, Chen G J, et al. Patterns of carbon and nitrogen stable isotopes and elemental composition of lake primary producers and zooplankton in Eastern Yunnan [J]. Journal of Lake Sciences, 2018,30(5):1400-1412.
[45]
Stock B, Semmens B. MixSIAR GUI User Manual Version3.1[M]. Scripps Institution of Oceanography, 2016:27-31.
[46]
Stock B C, Jackson A L, Ward E J, et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models [J]. PeerJ, 2018,6:e5096.
[47]
Jackson A L, Inger R, Parnell A C, et al. Comparing isotopic niche widths among and within communities:SIBER-Stable Isotope Bayesian Ellipses in R [J]. Journal of Animal Ecology, 2011,80(3):595-602.
[48]
Brian Fath. Encyclopedia of Ecology [M]. Elsevier, 2019:495-502
[49]
李华,沈洪艳,李双江,等.富营养化对白洋淀底栖-浮游耦合食物网结构和功能的影响[J]. 生态学报, 2018,38(6):2017-2030. Li H, Shen H Y, Li S J, et al. Effects of eutrophication on the benthic-pelagic coupling food web in Baiyangdian Lake [J]. Acta Ecologica Sinica, 2018,38(6):2017-2030.
[50]
Zhang X, Yi Y, Yang Z. The long-term changes in food web structure and ecosystem functioning of a shallow lake:Implications for the lake management [J]. Journal of Environmental Management, 2022,301:113804.
[51]
邓嘉懿,高晓钰,单航,等.洱海沉水植物的光合特性与分布水深的关系[J]. 水生生物学报, 2023,47(7):1157-1167. Deng J Y, Gao X Y, Shan H, et al. The measurement of photosynthetic parameters of submersed macrophytes with aims to explore the plant distribution depth in Erhai Lake [J]. Acta Hydrobiologica Sinica, 2023,47(7):1157-1167.
[52]
沈亚强,王海军,刘学勤.滇中五湖水生植物区系及沉水植物群落特征[J]. 长江流域资源与环境, 2010,19(Z1):111-119. Shen Y Q, Wang H J, Liu X Q. Aquatic flora and assemblage characteristics of submerged macrophytes in five lakes of the central Yunnan Province [J]. Resources and Environment in the Yangtze Basin, 2010,19(Z1):111-119.
[53]
王英才,汪志聪,吴卫菊,等.星云湖浮游植物及沉水植被的调查与分析[C]. 健康湖泊与美丽中国——第三届中国湖泊论坛暨第七届湖北科技论坛论文集.中国科学技术协会、湖北省人民政府, 2013:484-493. Wang Y C, Wang Z C, Wu W J, et al. Investigating and analyzing plankton and macrophytes in Xingyunhu lake [C]. Healthy Lakes and Beautiful China——Proceedings of the 3rd China Lakes Forum and the 7th Hubei Science and Technology Forum. China Association for Science and Technology, Hubei Provincial People's Government, 2013:484-493.
[54]
李晓晓,杨薇,孙涛,等.黄河口近海海草床浮游-底栖营养传递特征[J]. 生态学报, 2021,41(10):3816-3825. Li X X, Yang W, Sun T, et al. Assessment of energy flows and system attributes of seagrass bed in Yellow River estuary wetland [J]. Acta Ecologica Sinica, 2021,41(10):3816-3825.
[55]
温周瑞,谢平.太湖日本沼虾与秀丽白虾的食性与食物碳源分析[J]. 长江大学学报(自科版), 2013,10(29):36-42,7-8. Wen Z R, Xie P. Studies on the Feeding Habits and Sources of Dietary Carbon of Macrobrachium nippon-ense and Exopalaemon modestus in Taihu Lake [J]. Journal of Yangtze University (Nat Sci Edit), 2013, 10(29):36-42,7-8.
[56]
Zanden M J V, Rasmussen J B. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers [J]. Ecology, 1999,80(4):1395-1404.
[57]
徐军,张敏,谢平.氮稳定同位素基准的可变性及对营养级评价的影响[J]. 湖泊科学, 2010,22(1):8-20. Xu J, Zhang M, Xie P. Variability of stable nitrogen isotopic baselines and its consequence for trophic modeling [J]. Journal of Lake Sciences, 2010,22(1):8-20.
[58]
马锐麒,温雯雯,冯长涛,等.昆明城市土壤有机碳氮含量及其稳定同位素耦合关系研究[J]. 环境化学, 2024,43(4):1-11. Ma R Q, Wen W W, Feng C T, et al. Coupling relationship of urban soil organic carbon and nitrogen contents with isotopes in Kunming urban area [J]. Environmental Chemistry, 2024,43(4):1-11.
[59]
章宗涉,黄祥飞.淡水浮游生物研究方法[M]. 北京:科学出版社, 1991:318-320. Zhang Z S, Huang X F. 淡水浮游生物研究方法[M]. Beijing:Science Press, 1991:318-320.
[60]
刘红艳,李存耀,熊飞.入侵地和原产地太湖新银鱼群体遗传结构[J]. 水产学报, 2016,40(10):1521-1530. Liu H Y, Li C Y, Xiong F. Population genetic structure of Neosalanx taihuensis between invasive and original areas revealed by microsatellite DNA [J]. Journal of fisheries of China, 2016,40(10):1521-1530.
[61]
杨岚,李恒.云南湿地[M]. 北京:中国林业出版社, 2010:30-31. Yang L, Li H. Yunnan wetland [M]. Beijing:China Forestry Publishing House, 2010:30-31.
[62]
潘勇,曹文宣,徐立蒲,等.鱼类入侵的过程、机制及研究方法[J]. 应用生态学报, 2007,18(3):687-692. Pan Y, Cao W X, Xu L P et al. Process, mechanism, and research method of fish invasion [J]. Chinese Journal of Applied Ecology, 2007,18(3):687-692.
[63]
陈培康,余文荣,何家荣.云南星云湖移植太湖新银鱼试验[J]. 淡水渔业, 1989,19(1):31-32. Chen P K, Yu W R, He J R. Experiment of transplanting new salanx from Taihu Lake in Yunxing Lake, Yunnan Province [J]. Freshwater Fisheries, 1989,19(1):31-32.
[64]
Olson M H. Ontogenetic niche shifts in largemouth bass:Variability and consequences for first-year growth [J]. Ecology, 1996,77(1):179-190.
[65]
Romanuk T N, Hayward A, Hutchings J A. Trophic level scales positively with body size in fishes [J]. Global Ecology and Biogeography, 2011,20(2):231-240.