Microbial characteristics of bulking sludge in high-solids anaerobic digestion of kitchen waste
HE Qin1,2, LI Lei1, QU Li1, ZHAO Xiao-fei1, WU Di1, PENG Xu-ya1
1. Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; 2. Department of Environmental Science and Engineering, China West Normal University, Nanchong 637002, China
Abstract:A plug-flow reactor (PFR)(R1) and a completely-stirred tank reactor (CSTR)(R2) were operated under mesophilic temperature (37±1℃) for high-solids digestion of kitchen waste to investigate the microbial community characteristics before and after sludge-bulking using MiSeq high-throughput sequencing technology.The results showed that the archaeal community structure changed little after sludge-bulking,and acetoclastic methanogen Methanosaeta and mixotrophic methanogen Methanosarcina dominated in both reactors.There was a marked increase in the relative abundance of bacteria genera that might be related to sludge bulking.Those proliferated bacteria genera are those capable of producing biosurfactants (Corynebacterium,Lactobacillus,etc.) and those containing mycolic acids in cell walls (Actinomyces,Corynebacterium,etc.).In addition,volatile fatty acids (VFAs) and total ammonia nitrogen (TAN) were accumulated in these reactors before sludge-bulking.Accordingly,bacteria that can contribute to the accumulation of VFAs (Petrimonas,Anaerosalibacter and Fastidiosipila,etc.) and TAN (Proteiniphilum,Tepidimicrobium and Aminobacterium,etc.) were observed to proliferate.
Kougias P G, Boe K, O-Thong S, et al. Anaerobic digestion foaming in full-scale biogas plants:a survey on causes and solutions[J]. Water Sci Technol., 2014,69(4):889-895.
[2]
Moeller L, Görsch K, Müller R A, et al. Formation and suppression of foam in biogas plants-practical experiences[J]. Landtechnik., 2012,67:110-113.
Guo X, Wang C, Sun F, et al. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings[J]. Bioresource Technol., 2014,152:420-428.
[5]
Li L, He Q, Ma Y, et al. A mesophilic anaerobic digester for treating food waste:process stability and microbial community analysis using pyrosequencing[J]. Microb. Cell Fact., 2016, 15:65.
[6]
Ganidi N, Tyrrel S, Cartmell E. Anaerobic digestion foaming causes-a review[J]. Bioresource Technol., 2009,100:5546-5554.
[7]
Lienen T, Kleyböcker A, Verstraete W, et al. Foam formation in a downstream digester of a cascade running full-scale biogas plant:Influence of fat, oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella[J]. Bioresource Technol., 2014,153:1-7.
[8]
Zarkadas I S, Sofikiti A S, Voudrias E A, et al. Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters:Focussing on mixing ratios[J]. Renew. Energ., 2015,103:180-186.
Ganidi N, Tyrrel S, Cartmell E. The effect of organic loading rate on foam initiation during mesophilic anaerobic digestion of municipal wastewater sludge[J]. Bioresource Technol., 2011, 102(12):6637-6643.
[11]
Lienen T, Kleyböcker A, Brehmer M, et al. Floating layer formation, foaming, and microbial community structure change in full-scale biogas plant due to disruption of mixing and substrate overloading[J]. Energy, Sustainability and Society., 2013,3(20):14.
[12]
Marneri M, Mamais D, Koutsiouki E. Microthrix parvicella and Gordona amarae in mesophilic and thermophilic anaerobic digestion systems[J]. Environ. Technol., 2009,30(PⅡ 9102520315):437-444.
Kothari R, Pandey A K, Kumar S, et al. Different aspects of dry anaerobic digestion for bio-energy:an overview[J]. Renew. Sust. Energ. Rev., 2014,39:174-195.
[15]
Mu H, Zhao C, Zhao Y, et al. Enhanced methane production by semi-continuous mesophilic co-digestion of potato waste and cabbage waste:Performance and microbial characteristics analysis[J]. Bioresource Technol., 2017,236:68-76.
[16]
Li Y, Wang J, Zhang A, et al. Enhancing the quantity and quality of short-chain fatty acids production from waste activated sludge using CaO2 as an additive[J]. Water Res., 2015,83:84-93.
[17]
Wang Z, Liu X, Ni S, et al. Weak magnetic field:A powerful strategy to enhance partial nitrification[J]. Water Res., 2017, 120:190-198.
[18]
Yenigun O, Demirel B. Ammonia inhibition in anaerobic digestion:a review[J]. Process Biochem., 2013,48(5/6):901-911.
[19]
Dai X, Yan H, Li N, et al. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge[J]. Sci Rep-Uk., 2016,6:28193.
[20]
Lv Z, Hu M, Harms H, et al. Stable isotope composition of biogas allows early warning of complete process failure as a result of ammonia inhibition in anaerobic digesters[J]. Bioresource Technol., 2014,167:251-259.
[21]
Boe K, Kougias P G, Pacheco F, et al. Effect of substrates and intermediate compounds on foaming in manure digestion systems[J]. Water Sci. Technol., 2012,66(10):2146-2154.
[22]
Li L, He Q, Ma Y, et al. Dynamics of microbial community in a mesophilic anaerobic digester treating food waste:Relationship between community structure and process stability[J]. Bioresource Technol., 2015,189:113-120.
[23]
Ziganshin A M, Schmidt T, Scholwin F, et al. Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles[J]. Appl. Microbiol. Biot., 2011,89(6):2039-2052.
[24]
Ito T, Yoshiguchi K, Ariesyady H D, et al. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4in anaerobic digester sludge[J]. Isme J., 2011,5(12):1844-1856.
[25]
Jumas-Bilak E, Helene M. The phylum Synergistetes [M]. The prokaryotes-other major lineages of bacteria and the archaea, Rosenberg E, Springer Berlin Heidelberg, 2014,931-954.
[26]
Rosenberg E, Delong E F, Lory S, et al. The prokaryotes:Actinobacteria [M]. Fourth Edition ed. New York:Springer Heidelberg, 2014:1061.
[27]
Kougias P G, De Francisci D, Treu L, et al. Microbial analysis in biogas reactors suffering by foaming incidents[J]. Bioresource Technol., 2014,167:24-32.
[28]
Falsen E, Collins M D, Welinder-Olsson C, et al. Fastidiosipila sanguinis gen. nov., sp nov., a new gram-positive, coccus-shaped organism from human blood[J]. Int. J. Syst. Evol. Micr., 2005, 55(2):853-858.
[29]
Sakamoto M. The family Porphyromonadaceae [M]. The prokaryotes-other major lineages of bacteria and the archaea, Rosenberg E, Springer Berlin Heidelberg, 2014:811-824.
[30]
Rezgui R, Maaroufi A, Fardeau M, et al. Anaerosalibacter bizertensis gen. nov., sp nov., a halotolerant bacterium isolated from sludge[J]. Int. J. Syst. Evol. Micr., 2012,62(10):2469-2474.
[31]
Jabari L, Gannoun H, Cayol J, et al. Characterization of Defluviitalea saccharophila gen. nov., sp nov., a thermophilic bacterium isolated from an upflow anaerobic filter treating abattoir wastewaters, and proposal of Defluviitaleaceae fam. nov.[J]. Int. J. Syst. Evol. Micr., 2012,62(3):550-555.
[32]
Podosokorskaya O A, Bonch-Osmolovskaya E A, Beskorovaynyy A V, et al. Mobilitalea sibirica gen. nov., sp nov., a halotolerant polysaccharide-degrading bacterium[J]. Int. J. Syst. Evol. Micr., 2014,64(8):2657-2661.
[33]
Kenters N, Henderson G, Jeyanathan J, et al. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium[J]. J. Microbiol. Meth., 2011, 84(1):52-60.
[34]
De Vos P, Garrity G M, Jones D, et al. Bergey's manual of systematic bacteriology-the Firmicutes [M]. Springer Dordrecht Heidelberg London New York, 2011:1450.
[35]
Yokoyama H, Wagner I D, Wiegel J. Caldicoprobacter oshimai gen. nov., sp nov., an anaerobic, xylanolytic, extremely thermophilic bacterium isolated from sheep faeces, and proposal of Caldicoprobacteraceae fam. nov.[J]. Int. J. Syst. Evol. Micr., 2010,60(1):67-71.
[36]
Slobodkin A I, Tourova T P, Kostrikina N A, et al. Tepidimicrobium ferriphilum gen nov, sp nov, a novel moderately thermophilic, Fe(Ⅲ)-reducing bacterium of the order Clostridiales [J]. Int. J. Syst. Evol. Micr., 2006,56(2):369-372.
[37]
Satpute S K, Kulkarni G R, Banpurkar A G, et al. Biosurfactants from Lactobacilli species:properties, challenges and potential biomedical applications[J]. J. Basic. Microb., 2016,56(11):1140-1158.
[38]
Cann I, Bernardi R C, Mackie R I. Cellulose degradation in the human gut:Ruminococcus champanellensis expands the cellulosome paradigm[J]. Environ. Microbiol., 2016,18(2):307-310.
[39]
Ritalahti K M, Justicia-Leon S D, Cusick K D, et al. Sphaerochaeta globosa gen. nov., sp nov and Sphaerochaeta pleomorpha sp nov., free-living, spherical spirochaetes[J]. Int. J. Syst. Evol. Micr., 2012,62(1):210-216.
[40]
Li N, He J, Yan H, et al. Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge[J]. Bioresource Technol., 2017,241:95-102.
[41]
Demirel B, Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane:a review[J]. Rev. Environ. Sci. Biotechnol., 2008,7(2):173-190.
[42]
Yu H, Wang Z, Wu Z, et al. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor:performance, sludge characteristics and microbial community[J]. Sci Rep-Uk., 2016,6:20111.