Abstract:To understand the risk of graphene oxide (GO) to aquatic environments, the effects of GO on the growth and three bioactive compounds including carbohydrate, total protein and total lipid, in two species of freshwater microalgae, Scenedesmus obliquus and Nannochloropsis limnetica, were investigated in this study. Results showed a moderate toxicity of GO to both species with the 72h EC50 values of 25.63mg/L and 48.44mg/L, respectively. Transmission electron microscopy (TEM) images displayed that GO nanosheets not only adhered to the cell surfaces but also entered the cells, which induced obvious changes in ultrastructure, including plasmolysis, shrinkage of chloroplasts, and the decrease or even disappearance of starch grains. Synthesis of three photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoid) in microalgae was promoted at lower concentration (10mg/L) of GO after 72h exposure. However, contents of carotenoid in the cultures of both species and chlorophyll a in the culture of S. obliquus decreased significantly when exposed to the higher concentration (100mg/L) of GO. Basically, the synthesis of three bioactive substances in algal cells was stimulated under both experimental concentrations of GO, implying an active defense mechanism under stress. The decrease of carbohydrate content in cells of S. obliquus exposed to 100mg/L GO was hypothesized as results of the conversion of energy storage materials, i.e. from starch to neutral lipids.
Mabayoje O, Seredych M, Bandosz T J. Cobalt (hydr) oxide/graphite oxide composites:Importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide[J]. Journal of Colloid and Interface Science, 2012,378:1-9.
[2]
Hu C, Wang Q, Zhao H, et al. Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis[J]. Chemosphere, 2015,128:184-190.
[3]
Wu Q, Yin L, Li X, et al. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans[J]. Nanoscale, 2013,5:9934-9943.
[4]
Zhang W, Wang C, Li Z, et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism[J]. Advanced Materials, 2012,24:5391-5397.
[5]
Smith S C, Rodrigues D F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water:A review of mechanisms and applications[J]. Carbon, 2015,91:122-143.
[6]
Mandal S, Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production[J]. Applied Microbiology and Biotechnology, 2009,84(2):281-291.
[7]
黄适,吴双秀,徐健.微拟球藻培养中共生关系的初步研究[J]. 安徽农业科学, 2011,39(23):14246-14249. Huang S, Wu S X, Xu J. Study on symbiotic association in Nannochloropsis culture[J]. Journal of Anhui Agricultural Science, 2011,39(23):14246-14249.
[8]
刘建国,殷明焱,张京浦,等.微拟球藻的水产饵料效果研究[J]. 海洋科学, 2007,31(5):4-9. Liu J G, Yin M Y, Zhang J P, et al. Application of Nannochloropsis salina as feedstuff in aquaculture[J]. Marine Sciences, 2007,31(5):4-9.
[9]
Nogueira P F M, Nakabayashi D, Zucolotto V. The effects of graphene oxide on green algae Raphidocelis subcapitata[J]. Aquatic Toxicology, 2015,166:29-35.
[10]
Ouyang S, Hu X, Zhou Q. Envelopment-internalization synergistic effects and metabolic mechanisms of graphene oxide on single-cell Chlorella vulgaris are dependent on the nanomaterial particle size[J]. Applied Materials and Interfaces, 2015,7:18104-18112.
[11]
Zhao J, Cao X, Wang Z, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae[J]. Water Research, 2017,111:18-27.
[12]
吕小慧,陈白杨,朱小山.氧化石墨烯的水环境行为及其生物毒性[J]. 中国环境科学, 2016,36(11):3348-3359. Lv X H, Chen B Y, Zhu X S. Fate and toxicity of graphene oxide in aquatic environment[J]. China Environmental Science, 2016,36(11):3348-3359.
[13]
段伟艳,杜永祥,孟范平,等.氧化石墨烯对双壳类动物文蛤的亚致死毒性研究[J]. 中国环境科学, 2017,37(7):2755-2764. Duan W Y, Du Y X, Meng F P, et al. The sublethal toxicity of graphene oxide to bivalve Meretrix meretrix[J]. China Environmental Science, 2017,37(7):2755-2764.
[14]
陈宇炜,高锡云,陈伟民,等.太湖微囊藻的生长特征及其分离纯培养的初步研究[J]. 湖泊科学, 1999,11(4):351-356. Chen Y W, Gao X Y, Chen W M, et al. Study on growth characteristics and pure culture of Microcystis in Taihu Lake[J]. Journal of Lake Sciences, 1999,11(4):351-356.
[15]
OECD. OECD Guideline for Testing of Chemicals No.201. Alga Growth Inhibition Test[S].
[16]
Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents[J]. Biochemical Society Transactions (London), 1983,63:591-592.
[17]
Kochert G. Carbohydrate determination by the phenol-sulfuric acid method[J]. Handbook of Phycological Methods, 1978,2:95-97.
[18]
赵艳芳.富营养化环境下的海洋微藻生理生化特性研究[D]. 青岛:中国科学院研究生院(海洋研究所), 2008. Zhao Y F. Studies on the physiological and biochemical characteristics of marine microalgae in response to eutrophication[D]. Qingdao:Graduate School of the Chinese Academy of Sciences (Ocean Institute), 2008.
[19]
姜爽.2种多溴联苯醚对4种海洋微藻的毒性效应研究[D]. 青岛:中国海洋大学, 2011. Jiang S. The toxic effects of two kinds of polybrominated diphenyl ethers (PBDEs) on four species of marine microalgae[D]. Qingdao:Ocean University of China, 2011.
[20]
Wei L, Thakkar M, Chen Y, et al. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta[J]. Aquatic Toxicology, 2010,100:194-201.
[21]
HJ/T154-2004新化学物质危害评估导则[S]. HJ/T154-2004 New chemical substance hazard assessment guidelines[S].
[22]
Sadiq L M, Pakrashi S, Chandrasekaran N, et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species:Scenedesmus sp. and Chlorella sp.[J]. Journal of Nanoparticle Research, 2011,13(8):3287-3299.
[23]
赵丽红,朱小山,王一翔,等.纳米二氧化钛(nTiO2)与双酚A对斜生栅藻(Scenedesmus obliquus)的联合毒性效应[J]. 生态毒理学报, 2015,10(6):110-120. Zhao L H, Zhu X S, Wang Y X, et al. The combined toxic effect of nanoscale titanium dioxide (nTiO2) and bisphenol A (BPA) on Scenedesmus obliquus[J]. Asian Journal of Ecotoxicology, 2015,10(6):110-120.
[24]
朱小山,朱琳,田胜艳,等.三种金属氧化物纳米颗粒的水生态毒性[J]. 生态学报, 2008,28(8):3507-3516. Zhu X S, Zhu L, Tian S Y, et al. Aquatic ecotoxicities of nanoscale TiO2, ZnO and Al2O3 water suspensions[J]. Acta Ecologica Sinica, 2008,28(8):3507-3516.
[25]
Ye N, Wang Z, Fang H, et al. Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus[J]. Journal of Environmental Science and Health, Part A, 2017,52(6):555-560.
[26]
Zhang Y, Meng T, Shi L, et al. The effects of humic acid on the toxicity of graphene oxide to Scenedesmus obliquus and Daphnia magna[J]. Science of the Total Environment, 2019,649:163-171.
[27]
Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii[J]. Environmental Science and Technology, 2008,42(23):8959-8964.
[28]
Perreault F, Bogdan N, Morin M, et al. Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes[J]. Nanotoxicology, 2012,6(2):109-120.
[29]
Wei C, Zhang Y, Guo J, et al. Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus[J]. Journal of Environmental Sciences, 2010,22(1):155-160.
[30]
高寒阳.氧化钛/石墨烯复合催化剂的合成及其光催化性能研究[D]. 上海:上海交通大学, 2013. Gao H Y. TiO2/graphene composite catalyst and its application in photocatalysis[D]. Shanghai:Shanghai Jiao Tong University, 2013.
[31]
Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts[J]. Biotechnology Advances, 2011,29(6):686-702.
[32]
任文杰,滕应.石墨烯的环境行为及其对环境中污染物迁移归趋的影响[J]. 应用生态学报, 2014,25(9):2723-2732. Ren W J, Teng Y. Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment[J]. Chinese Journal of Applied Ecology, 2014,25(9):2723-2732.
[33]
李黎明.磁性藻的制备及其对刚果红和亚甲基蓝废水吸附脱色效果研究[D]. 秦皇岛:燕山大学, 2017. Li L M. The preparation of magnetical microalgae and its decolorization of congo red and methylene blue[D]. Qinhuangdao:Yanshan University, 2017.
[34]
Johnson X, Alric J. Central carbon metabolism and electron transport in Chlamydomonas reinhardtii:metabolic constraints for carbon partitioning between oil and starch[J]. Eukaryotic Cell, 2013,12(6):776-793.
[35]
Markou G. Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus[J]. Bioresource Technology, 2012,116:533-535.
[36]
Ho S-H, Nakanishi A, Kato Y, et al. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4[J]. Scientific Reports, 2017,7:45471.
[37]
Li Y, Han D, Sommerfeld M, et al. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions[J]. Bioresource Technology, 2011,102:123-129.
[38]
Chen L, Zhou L, Liu Y, et al. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii[J]. Ecotoxicology and Environmental Safety, 2012,84:155-162.
[39]
Metzler D M, Erdem A, Tseng Y H, et al. Responses of algal cells to engineered nanoparticles measured as algal cell population, chlorophyll a, and lipid peroxidation:effect of particle size and type[J]. Journal of Nanotechnology, 2012,2012:1-12.
[40]
Hu X, Lu K, Mu L, et al. Interactions between graphene oxide and plant cells:Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders[J]. Carbon, 2014,80:665-676.
[41]
Li Z, Wakao S, Fischer B B, et al. Sensing and responding to excess light[J]. Annual Review of Plant Biology, 2009,60(1):239-260.
[42]
李威,恽烨,是怡芸,等.5-氟尿嘧啶对蛋白核小球藻和羊角月芽藻生长及叶绿素含量的影响[J]. 生态毒理学报, 2015,10(6):213-218. Li W, Yun Y, Shi Y Y, et al. Effects of 5-fluorouracil on the growth and chlorophyll content of Chlorella pyrenoidosa and Selenastrum capricornutum[J]. Asian Journal of Ecotoxicology, 2015,10(6):213-218.
[43]
Cho K, Lee C H, Ko K, et al. Use of phenol-induced oxidative stress acclimation to stimulate cell growth and biodiesel production by the oceanic microalga Dunaliella salina[J]. Algal Research, 2016,17:61-66.
[44]
师玥.青岛大扁藻光合作用过程对重金属Cu2+急性毒性胁迫的响应研究[D]. 青岛:中国海洋大学, 2012. Shi Y. The response of photosynthetic process of Platymonas helgolandica to the acute stress of copper[D]. Qingdao:Ocean University of China, 2012.
[45]
唐学玺,李永祺,张朝阳.久效磷对扁藻碳水化合物和游离氨基酸含量的影响[J]. 海洋通报, 1998,17(5):93-96. Tang X X, Li Y Q, Zhang C Y. Effect of monocrotophos on carbohydrate and free amino acid content in Platymonas[J]. Marine Science Bulletin, 1998,17(5):93-96.
[46]
Mohamed Z A. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem[J]. Ecotoxicology, 2008,17(6):504-516.
[47]
谢艳,李宗芸,冯琳,等.藻类毒物检测方法及其应用研究进展[J]. 环境科学与技术, 2009,31(12):77-83. Xie Y, Li Z Y, Feng L, et al. Detection method and its application for toxicant using algae[J]. Environmental Science & Technology, 2009,31(12):77-83.
[48]
Sabatini S E, Juarez A B, Eppis M R, et al. Oxidative stress and antioxidant defenses in two green microalgae exposed to copper[J]. Ecotoxicology and Environmental Safety, 2009,72(4):1200-1206.
[49]
Parrish C C, Wangersky P J. Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornuturn grown in cage culture turbidostats with a range of nitrogen supply rates[J]. Marine Ecology Progress Series, 1987,35:119-128.
[50]
Lombardi A T, Wangersky P J. Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures[J]. Marine Ecology Progress Series, 1991,77:39-47.
[51]
Barreto D M, Tonietto A E, Amaral C D, et al. Physiological responses of Chlorella sorokiniana to copper nanoparticles[J]. Environmental Toxicology & Chemistry., 2019,38(2):387-395.
[52]
Kang N K, Lee B, Choi G G, et al. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles[J]. Korean Journal of Chemical Engineering, 2014,31(5):861-867.
[53]
Pádrová K, Lukavsk J, Nedbalová L, et al. Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae[J]. Journal of Applied Phycology, 2015,27(4):1443-1451.
[54]
Martín-De-Lucía I, Campos-Mañas M C, Agüera A, et al. Combined toxicity of graphene oxide and wastewater to the green alga Chlamydomonas reinhardtii (Article)[J]. Environmental Science:Nano, 2018,5(7):1729-1744.
[55]
Yilancioglu K, Cokol M, Pastirmaci I, et al. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain[J]. PloS One, 2014,9:1-13.