Soil bacteria community structure and function prediction in the Hulun Buir Sandy Area
DU Yu-jia1,2, GAO Guang-lei1,2, CHEN Li-hua1, DING Guo-dong1,2, ZHANG Ying1, CAO Hong-yu1,2
1. Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; 2. Yanchi Ecology Research Station of the Mu Us Desert, Yanchi 751500, China
Abstract:Soil samples were collected from four habitats in the Hulun Buir sandy area including bare sandland, grassland, Pinus sylvestris var. mongolica plantation and P. sylvestris natural forest. Subsequently, 16S rRNA genes high-throughput sequencing and PICRUSt-based functional prediction were performed to detect soil bacterial community structure and potential functional component. The results indicated that in the Hulun Buir sandy area, the natural forest and plantation had the highest and lowest soil bacterial Shannon Index (8.623±0.193 and 7.432±0.028), respectively. There were significant differences in alpha and beta diversity of soil bacteria in different habitats. The relative abundance of Proteobacteria was the highest in the grassland (29.83%±1.14%), P. sylvestris plantation (34.73%±1.99%) and natural forest (31.95%±0.21%). The relative abundance of Actinobacteria was the highest in the bare sand (26.13%±0.43%). The dominant soil bacteria genera with highest relative abundance were Bradyrhizobium, RB41 with the mean values of 5.29%±2.24% and 4.22%±1.23%, respectively. Soil bacterial functions were classified into 6 and 40 functional categories at hierarchy level 1and 2,which implied the abundant soil bacteria functions. Soil bacteria was active in environmental information processing, metabolism, genetic information processing and organic systems. Further, the functional genes of soil bacterial from the natural forest was abundant in nucleotide metabolism, enzyme family, amino acid metabolism and carbohydrate metabolism, which ensured soil bacteria survival with higher diversity. Conclusively, the functional genes fluctuation of soil bacteria associated with different habitats in the Hulun Buir sandy area reflected the changes of soil bacterial community structure and diversity, and indicated the effects of functional genes on soil bacterial community. Our study will provide a firm basis for better prediction and understanding of soil bacteirial metabolic potential and functions in sandy area.
厉桂香,马克明.北京东灵山树线处土壤细菌的PICRUSt基因预测分析[J]. 生态学报, 2018,38(6):2180-2186. Li G X, Ma K M. PICRUSt-based predicted metagenomic analysis of treeline soil bacteria on Mount Dongling, Beijing[J]. Acta Ecologica Sinica, 2018,38(6):2180-2186.
[2]
李婷,张威,刘光琇,等.荒漠土壤微生物群落结构特征研究进展[J]. 中国沙漠, 2018,38(2):329-338. Li T, Zhang W, Liu G Y, et al. Advances in the study of microbial ecology in desert soil[J]. Desert of China, 2018,38(2):329-338.
[3]
黄艺,黄木柯,柴立伟,等.干旱半干旱区土壤微生物空间分布格局的成因[J]. 生态环境学报, 2018,27(1):191-198. Huang Y, Huang M K, Chai L W, et al. Drivers of the spatial patterns of soil microbial communities in arid and semi-arid regions[J]. Ecology and Environmental Sciences, 2018,27(1):191-198.
[4]
李新,焦燕,代钢,等.内蒙古河套灌区不同盐碱程度的土壤细菌群落多样性[J]. 中国环境科学, 2016,36(1):249-260. Li X, Jiao Y, Dai G, et al. Soil bacterial community diversity under different degrees of saline-alkaline in the Hetao Area of Inner Mongolia[J]. China Environmental Science, 2016,36(1):249-260.
[5]
Suleiman A A, Tojo Soler C M, Hoogenboom G. Determining FAO-56 crop coefficients for peanut under different water stress levels[J]. Irrigation Science, 2013,31(2):169-178.
[6]
程亮,王信,郭青云.青藏高原不同生境土壤细菌群落结构特征及其与环境的关系[J]. 干旱地区农业研究, 2019,37(1):18-26. Cheng L, Wang X, Guo Q Y. Relationship of soil bacterial community composition from different ecosystems on Qinghai-Tibet Plateau with environment factors[J]. Agricultural Research in the Arid Areas, 2019,37(1):18-26.
[7]
Peter H, Sommaruga R. Shift in diversity and function of lake bacteria communities upon glacier retreat[J]. The ISME Journal, 2016,10(7):1545-1554.
[8]
Mohammad B, Falk H, Forslund S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018,560:233-237.
[9]
Wei H, Peng C H, Yang B, et al. Contrasting soil bacterial community, diversity, and function in two forests in China[J]. Frontiers in Microbiology, 2018,9:1693.
[10]
Maestre F T, Delgado-Baquerizo M, Jeffries T C, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J]. Proceedings of the National Academy of Sciences, 2015,112(51):15684-15689.
[11]
Langille M G, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA 15marker gene sequences[J]. Nature Biotechnology, 2013,31(9):814-821.
[12]
Asshauer K P, Wemheuer B, Daniel R, et al. Tax4 Fun:Predicting functional profiles from metagenomic 16S rRNA data[J]. Bioinformatics, 2015,31(17):2882-2884.
[13]
Louca S, Jacques S M S, Pires A P F, et al. High taxonomic variability despite stable functional structure across microbial communities[J]. Nature Ecology & Evolution, 2016,1(1):0015.
[14]
董志颖,洪慢,胡晗静,等.过量氮输入对寡营养海水细菌群落代谢潜力的影响[J]. 环境科学学报, 2018,38(2):457-466. Dong Z Y, Hong M, Hu H J, et al. Effect of excess nitrogen loading on the metabolic potential of the bacteria community in oligotrophic coastal water[J]. Acta Scientiae Circumstantiae, 2018,38(2):457-466.
[15]
孙峰,田伟,张菲,等.丹江口库区库滨带植被土壤细菌群落多样性及PICRUSt功能预测分析[J]. 环境科学, 2019,40(1):421-429. Sun F, Tian W, Zhang F, et al. Composition and predictive functional analysis of rhizosphere bacterial communities in riparian buffer strips in the Danjiangkou reservoir, China[J]. Environmental Science, 2019,40(1):421-429.
[16]
Langille M G I, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013,31(9):814-821.
[17]
Chu H, Sun H, Tripathi B M, et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau[J]. Environmental Microbiology, 2016,18(5):1523-1533.
[18]
Wendu R L, Li G, Zhang J N, et al. The study of soil microbial biomass and soil enzyme avtivity on different grassland in Hulunbeier, Inner Mongolia[J]. Acta Prataculturae Sinica, 2010,19(5):94-102.
[19]
Zhang H F, Song X L, Wang C L, et al. The effects of different vegetation restoration patterns on soil bacterial diversity for sandy land in Hulunbeier[J]. Acta Ecologica Sinica, 2013,33(4):211-216.
[20]
查同刚.土壤理化分析[M]. 北京:中国林业出版社, 2017:18-50. Zha T G. Soil physicochemical analysis[M]. Beijing:China Forestry Publishing House, 2017:18-50.
[21]
Rintala A, Pietilä S, Munukka E, et al. Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor[J]. Biomol Tech, 2017,28(1):19-30.
[22]
Kuczynski J, Stombaugh J, Walters W A, et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities[J]. Current Protocols in Bioinformatics, 2011,Chapter 10(7):Unit 10.7.
[23]
武志华,夏冬双,王雪寒,等.利用PCR-DGGE技术分析内蒙古西部地区土壤细菌的多样性[J]. 生态学报, 2019,39(7):2545-2557. Wu Z H, Xia D S, Wang X H, et al. Analysis of bacterial diversity of soil in western Inner Mongolia using PCR-DGGE[J]. Acta Ecologica Sinica, 2019,33(7):2545-2557.
[24]
Martirosyan V, Unc A, Miller G, et al. Desert perennial shrubs shape the microbial-community miscellany in laimosphere and phyllosphere Space[J]. Microbial Ecology, 2016,72(3):659-668.
[25]
刘洋,曾全超,黄懿梅.基于454高通量测序的黄土高原不同乔木林土壤细菌群落特征[J]. 中国环境科学, 2016,36(11):3487-3494. Liu Y, Zeng Q C, Huang Y M. Soil microbial communities by 454 prosequencing under different arbor forests on the Loess Plateau[J]. China Environmental Science, 2016,36(11):3487-3494.
[26]
张博文,杨彦明,李金龙,等.连续深松对黑土水热酶特性及细菌群落的影响[J]. 生态学杂志, 2018,37(11):3323-3332. Zhang B W, Yang Y M, Li J L, et al. Effects of continuous subsoiling on temperature, water content, enzyme activity and bacterial community in black soil[J]. Chinese Journal of Ecology, 2018,37(11):3323-3332.
[27]
韩世忠,高人,李爱萍,等.中亚热带地区两种森林植被类型土壤微生物群落结构[J]. 应用生态学报, 2015,26(7):2151-2158. Han S Z, Gao R, Li A P, et al. Soil microbial community structure of two types of forests in the mid-subtropics of China[J]. Chinese Journal of Applied Ecology, 2015,26(7):2151-2158.
[28]
Mackay J E, Macdonald L M, Smernik R J, et al. Organic amendments as phosphorus fertilisers:chemical analyses, biological processes and plant puptake[J]. Soil Biology and Biochemistry, 2017,107:50-59.
[29]
纳小凡,郑国琦,彭励,等.不同种植年限宁夏枸杞根际微生物多样性变化[J]. 土壤学报, 2016,53(1):241-252. Na X F, Zhen G Q, Peng L, et al. Microbial biodiversity in rhizosphere of Lycium bararum L. relative to cultivation history[J]. Acta Pedologica Sinica, 2016,53(1):241-252.
[30]
张凯煜,谷洁,王小娟,等.微生物有机肥对樱桃园土壤细菌群落的影响[J]. 中国环境科学, 2019,39(3):1245-1252. Zhang K Y, Gu J, Wang X J, et al. Effects of bio-organic fertilizer on the soil bacterial community in a cherry orchard[J]. China Environmental Science, 2019,39(3):1245-1252.
[31]
Saleemi M, Kiani M Z, Sultan T, et al. Integrated efect of plant growth-promoting rhizobacteria and phosphate-solubilizing microorganisms on growth of wheat (Triticum aestivum L.) under rainfed condition[J]. Agriculture and Food Security, 2017,6(1):46.
[32]
罗旦,陈吉祥,程琳,等.陕北沙区3种主要植物根际土壤细菌多样性与土壤理化性质相关性分析[J]. 干旱区资源与环境, 2019, 33(3):151-157. Luo D, Chen J X, Cheng L, et al. Analysis of bacteria diversity in the rhizosphere soil of three main plants and its correlation with the soil physical and chemical properties in the desertification area of northern Shanxi[J]. Journal of Arid Land Resources and Environment, 2019,33(3):151-157.
[33]
刘洋,黄懿梅,曾全超.黄土高原不同植被类型下土壤细菌群落特征研究[J]. 环境科学, 2016,37(10):3931-3938. Liu Y, Huang Y M, Zeng Q C. Soil bacterial communities under different vegetation types in the Loess Plateau[J]. Environmental Science, 2016,37(10):3931-3938.
[34]
高雪峰,韩国栋,张国刚.短花针茅荒漠草原土壤微生物群落组成及结构[J]. 生态学报, 2017,37(15):5129-5136. Gao X F, Han G D, Zhang G G. Soil microbial community structure and composition of Stipa Breiflora on the desert steppe[J]. Acta Ecologica Sinica, 2017,37(15):5129-5136.
[35]
刘睿,周孝德.水沙环境变化对季节性多沙河流沉积物菌群特征的影响[J]. 中国环境科学, 2017,37(11):4342-4352. Liu R, Zhou X D. Influence of sediment characteristics and overlying water quality on sediment bacterial communities in a seasonal sandy river[J]. China Environmental Science, 2017,37(11):4342-4352.
[36]
Lin Y T, Jangid K, Whitman W B, et al. Soil bacterial communities in native and regenerated perhumid montane forests[J]. Applied Soil Ecology, 2011,47(2):111-118.
[37]
Stevenson A, Hallsworth J E. Water and temperature relations of soil Actinobacteria[J]. Environmental Microbiology Reports, 2014,6(6):744-755.
[38]
杨安娜,陆云峰,张俊红,等.杉木人工林土壤养分及酸杆菌群落结构变化[J]. 林业科学, 2019,55(1):119-127. Yang A N, Lu Y F, Zhang J H, et al. Changes in soil nutrients and Acidobacteria Community Structure in Cunninghamia lanceolata Plantations[J]. Scientia Silvae Sinicae, 2019,55(1):119-127.
[39]
Bachar A, Soares M I M, Gillor O. The effect of resource islands on abundance and diversity of bacteria in arid soils[J]. Microbial Ecology, 2012,63(3):694-700.
[40]
Nie M, Meng H, Li K, et al. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China[J]. Current Microbiology, 2012,64(1):34-42.
[41]
王光华,刘俊杰,于镇华,等.土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016,32(2):14-20. Wang G H, Liu J J, Yu Z H, et al. Research progress of Acidobacteria ecology in soils[J]. Biotechnology Bulletin, 2016,32(2):14-20.
[42]
Xiong J B, Liu Y Q, Lin X G, et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau[J]. Environmental Microbiology, 2012,14(9):2457-2466.
[43]
Liu G Z, Jin M, Cai C T, et al. Soil microbial community structure and physicochemical properties in amomum tsaoko -based agroforestry systems in the Gaoligong Mountains, Southwest China[J]. Sustainability, 2019,11(2):1-14.
[44]
刘旻霞,李瑞,张灿,等.兰州市南山季节性土壤微生物特征及影响因素[J]. 中国环境科学, 2018,38(7):2722-2730. Liu M X, Li R, Zhang C, et al. Seasonal characteristics and influencing factors of soil microbial in Nanshan, Lanzhou[J]. China Environmental Science, 2018,38(7):2722-2730.
[45]
Beth F T, Brockett, Cindy E, et al. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology and Biochemistry, 2012,44(1):9-20.
[46]
白玉涛,周玉,赵吉.内蒙古高原干涸湖泊反硝化及甲烷氧化细菌的群落分析[J]. 中国环境科学, 2012,32(7):1293-1301. Bai Y T, Zhou Y, Zhao J. community structures of denitrifying bacteria and methanotrophs in wetland soils of dry-up lake in the Inner Mongolia Plateau[J]. China Environmental Science, 2012,32(7):1293-1301.
[47]
Kanokratana P, Uengwetwanit T, Rattanachomsri U, et al. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis[J]. Microbial Ecology, 2011,61(3):518-528.
[48]
Wu Z X, Hao Z P, Sun Y Q, et al. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng[J]. Applied Soil Ecology, 2016,107:99-107.
[49]
Fabina S, Paula Jorge L M, Rodrigues Jizhong Z, et al. Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities[J]. Molecular Ecology, 2014,23(12):2988-2999.