Reaeration surging phenomenon with artificial disturbance and theimplication for the impact of turbulent kinetic energy in river
ZHANG Chen1, WANG Hao-bai1, HU Hua-fen2, GAO Xue-ping1, YU Hao1, YAN Qi1
1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China; 2. Haihe River Administrative Bureau of Tianjin, Tianjin 300141, China
Abstract:Nowadays, the disturbance aeration device widely used in the ecological restoration of rivers and lakes. However, it is still not clear how the artificial stir influences the reaeration in rivers. To address this issue, we developed a deep-controlled horizontal push-flow aeration device, which can change the flow velocity of the local water flow in the river channel. In order to investigate the effects of artificial disturbance on the reaeration coefficient of the river, the device was used to conduct an in-situ experiment in the Waihuan river of Tianjin. The results showed that the water velocity increased to 40cm/s and 22 times higher than the original velocity when the device operated. Similarly, the dissolved oxygen concentration increased by 0.6~1.7mg/L (10%). Moreover, five groups of classical rivers reaeration coefficient empirical formulae underestimated the reaeration coefficients. It can be called the river reaeration surging phenomenon under artificial disturbance. There was a significantly positive relationship between the turbulence kinetic energy and reaeration coefficient in the river. Compared with the natural flow, the artificial disturbance enhanced the vertical and longitudinal turbulence kinetic energy and accelerated the dissolved oxygen diffusion in the middle and bottom water, respectively. The increase of the turbulence kinetic energy increased reaeration rate and contributed to reaeration surge. This study provides a scientific basis for the hydraulic methods of improving water quality in urban rivers.
张晨, 王浩百, 胡华芬, 高学平, 于昊, 严琦. 人为扰动下河流复氧激增现象及机制分析[J]. 中国环境科学, 2020, 40(5): 2167-2173.
ZHANG Chen, WANG Hao-bai, HU Hua-fen, GAO Xue-ping, YU Hao, YAN Qi. Reaeration surging phenomenon with artificial disturbance and theimplication for the impact of turbulent kinetic energy in river. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(5): 2167-2173.
王延明,李道季,方涛,等.长江口及邻近海域底栖生物分布及与低氧区的关系研究[J]. 海洋环境科学, 2008,27(2):139-143. Wang Y M, Li D J, Fang T, et al. Study on relation of distribution of benthos and hypoxia in Yangtze River Estuary and adjacent sea[J]. Marine Environmental Science, 2008,27(2):139-143.
[2]
赵海超,王圣瑞,赵明,等.洱海水体溶解氧及其与环境因子的关系[J]. 环境科学, 2011,32(7):1952-1959. Zhao H C, Wang S R, Zhao M, et al. Relationship Between the DO and the Environmental Factors of the Water Body in Lake Erhai[J]. Chinese Journal of Environmental Science, 2011,32(7):1952-1959.
[3]
王宁宁,赵阳国,孙文丽,等.溶解氧含量对人工湿地去除污染物效果的影响[J]. 中国海洋大学学报(自然科学版), 2018,48(6):24-30. Wang NN, Zhao YG, Sun WL, et al. Effect of Dissolved Oxygen on the Removal of Pollutants in Artificial Wetland[J]. Periodical of Ocean University of China, 2018,48(6):24-30.
[4]
王玉琳,汪靓,华祖林.黑臭水体中不同浓度Fe2+、S2-与DO和水动力关系[J]. 中国环境科学, 2018,38(2):627-633. Wang Y L, Wang L, Hua Z L. The relationships of different concentration Fe2+, S2- with hydrodynamics, DO in black bloom water based on quantile regression method[J]. China Environmental Science, 2018,38(2):627-633.
[5]
李柏林,任晓玲,李晔,等.溶解氧对单级颗粒污泥自养脱氮系统影响的模拟[J]. 中国环境科学, 2019,39(12):5126-5133. Li B L, Ren X L, Li Y, et al. Simulation study on the effect of dissolved oxygenon single-stage granular sludge autotrophic removal system[J]. China Environmental Science, 2019,39(12):5126-5133.
[6]
王旭,王永刚,孙长虹,等.城市黑臭水体形成机理与评价方法研究进展[J]. 应用生态学报, 2016,27(4):1331-1340. Wang X, Wang Y G, Sun C H, et al. Formation mechanism and assessment method for urban black and odorous water body:A renew[J]. Chinese Journal of Applied Ecology, 2016,27(4):1331-1340.
[7]
雒文生,李莉红,贺涛.水体大气复氧理论和复氧系数研究进展与展望[J]. 水利学报, 2003,34(11):64-70. Luo W S, Li L H, He T. Advances and prospects in the research of water reaeration theory and reaeration coefficient[J]. Journal of Hydraulic Engineering, 2003,34(11):64-70.
[8]
李莉红,雒文生,贺涛.静态水体大气复氧理论的实验研究[J]. 武汉大学学报(工学版), 2003,36(5):66-69. Li L H, Luo W S, He T. Experimental research of reaeration theory in static water body[J]. Engineering Journal of Wuhan University, 2003, 36(5):66-69.
[9]
李然,李嘉,李克锋.紊动水体大气复氧系数研究进展[J]. 上海环境科学, 2000,19(4):176-179. Li R, Li J, Li K L. Study Progress on Atmospheric Reaeration Coefficients of Turbulent Water Body[J]. Shanghai Environmental Sciences, 2000,19(4):76-179.
[10]
李然,赵文谦,李嘉,等.紊动水体表面传质系数的实验研究[J]. 水利学报, 2000,31(2):60-65. LI R, ZHAO W Q, LI J, et al. Experimental study on interfacial mass transfer coefficient of turbulent water[J]. Journal of Hydraulic Engineering, 2000,32(2):60-65.
[11]
张宗才,张新申,代红,等.紊动水体中气液传质过程分析(英文)[J]. 广西科学, 2004,11(4):327-331. ZHANG Z C, ZHANG X S, DAI H, et al Studies on the Reaeration Process of Turbulent Water[J]. Guangxi Sciences, 2004,11(4):327-331.
[12]
Bennett J P, Rathbun R E. Reaeration in open-channel flow[M]. US:US Government Printing Office, 1972:17-21.
[13]
O'Connor D J, Dobbins W E. Mechanism of reaeration in natural streams[J]. Transactions of the American Society of Civil Engineers, 1958,123(1):641-666.
[14]
Krenkel P A, Orlob G T. Turbulent diffusion and the reaeration coefficient[J]. Journal of the Sanitary Engineering Division, 1962, 88(2):53-84.
[15]
Cadwallader T E, McDonnell A J. A multivariate analysis of reaeration data[J]. Water Research, 1969,3(10):731-742.
[16]
Thackston E L, Krenkel P A. Reaeration prediction in natural streams[J]. Journal of the Sanitary Engineering Division, 1969,95(1):65-94.
[17]
Moog D B, Jirka G H. Stream reaeration in nonuniform flow:macroroughness enhancement[J]. Journal of Hydraulic Engineering, 1999,125(1):11-16.
[18]
Gonçalves J C S I, Silveira A, Júnior G B L, et al. Reaeration coefficient estimate:new parameter for predictive equations[J]. Water, Air, & Soil Pollution, 2017,228(8):307.
[19]
Ranjith S, Shivapur A V, Kumar P S K, et al. Assessment of reaeration equations for river tungabhadra, karnataka, India and generation of the refined equation[J]. Journal of Geography, Environment and Earth Science International, 2019,21(4):1-9.
[20]
Dong L, Wang Y, Dai C, et al. Prediction of aeration performance for inverted umbrella aerator based on dimensional analysis[J]. Journal of Chemical Engineering of Japan, 2019,52(4):369-376.
[21]
Sharma A, Devi T T, Kumar B. Turbulence in continuous flow surface aeration systems[J]. Water Science and Technology, 2017,75(5):1148-1157.
[22]
张晨,李洁,高学平.一种用于城市景观河道的水体智能加速曝气装置[P]. 天津:CN104150620A, 2014-11-19. ZHANG C, LI J, GAO X P. Used in urban landscape water body of the river way acceleration intelligent aeration device[P]. Tianjin:CN104150620A, 2014-11-19.
[23]
张朝能.水体中饱和溶解氧的求算方法探讨[J]. 环境科学研究, 1999,12(2):54-55. ZHANG C N. Study on Calculation Method of Saturation Values of Dissolved Oxygen in Waters[J]. Research of Environmental Sciences, 1999,12(2):54-55.
[24]
袁金华,王有乐.清水充氧实验中饱和溶解氧值确定方法的探讨[J]. 水资源保护, 2008,24(2):79-81. YUAN J H, WANG Y L. Saturation values of dissolved oxygen in oxygenated clean water experiments[J]. Water Resources Protection, 2008,24(2):79-81.
[25]
秦伯强,范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨[J]. 中国环境科学, 2002,22(2):55-58. QING B Q, FAN C X. Exploration of conceptual model of nutrient release from inner source in large shallow lake[J]. China Environmental Science, 2002,22(2):55-58.
[26]
李彬,张坤,钟宝昌,等.底泥污染物释放水动力特性实验研究[J]. 水动力学研究与进展A辑, 2008,23(2):126-133. LI B, ZHANG K, ZHONG B C, et al. An experimental study on release of pollutants from sediment under hydrodynamic conditions[J]. Chinese Journal of Hydrodynamics, 2008,23(2):126-133.
[27]
王美丽,刘春,白璐,等.曝气对黑臭河道污染物释放的影响[J]. 环境工程学报, 2015,9(11):5249-5254. WANG M L, LIU C, BAI L, et al. Effect of aeration on pollutants release and removal in black-odor river[J]. Chinese Journal of Environmental Engineering, 2015,9(11):5249-5254.
[28]
周子振,黄廷林,李扬,等.扬水曝气器对水源水库水质改善及沉积物控制[J]. 中国环境科学, 2017,37(1):210-217. ZHOU Z ZH, HUANG Y L, LI Y, et al. Improvement of water quality and sediment control by WLAs in a source water reservoir[J]. China Environmental Science, 2017,37(1):210-217.
[29]
Jha R, Ojha C S P, Bhatia K K S. Refinement of predictive reaeration equations for a typical Indian river[J]. Hydrological Processes, 2001,15(6):1047-1060.