Determination of the heavy metal leaching mechanism from the sludge by acidophilic bacteria
JIANG Tao1, XIA Jing2, TIAN Yong-jing1,3, ZHAO Wei1, SUN Tian-tian1
1. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
2. CCDI(Suzhou) Exploration & Design Consultant CO. LTD, Suzhou 215009, China;
3. National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
In order to determine the biological leaching mechanism of mixed strains, three biological leaching-experiments, i.e., adding leaching mixed strains + substrates (ferrous ammonium sulfate, sulfur powder), addingsubstrates alone andsulfuric acid alone were conducted to estimate the contribution from direct oxidation(F11), chemical oxidation (F12) and acid leaching (F13). These experiments were tested for the excess activated sludge to evaluate the leaching of Cu and Zn. Results show that for the leaching of Cu, the contribution rates of F11, F12, and F13 were 92.55%, 7.45%, and 0% respectively, indicating that the primary role of the direct mechanism. For the leaching of Zn, the contribution rates of F11, F12, and F13 were 18.86%, 44.35%, 36.79%respectively, indicating the dominate role of an indirect mechanism. This method can determine the biological leaching mechanism of heavy metals under actual environmental conditions, and provide theoretical basis for related research and practical applications.
姜涛, 夏晶, 田永静, 赵炜, 孙甜甜. 混合嗜酸菌浸出污泥中重金属机制判定方法[J]. 中国环境科学, 2020, 40(6): 2529-2536.
JIANG Tao, XIA Jing, TIAN Yong-jing, ZHAO Wei, SUN Tian-tian. Determination of the heavy metal leaching mechanism from the sludge by acidophilic bacteria. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(6): 2529-2536.
Xia L X, Tang L, Xia J L, et al.Relationships among bioleaching performance, additional elemental sulfur, microbial population dynamics and its energy metabolism in bioleaching of chalcopyrite [J].Transactions of the Nonferrous Metals Society of China, 2012, 22(1):190-198.
[2]
Gan M, Jie S, Li M, et al.Bioleaching of multiple metals from contaminated sediment by moderate thermophiles [J].Marine Pollution Bulletin, 2015,97(1/2).
[3]
Lee E, Han Y, Park J, et al.Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillusthiooxidans [J].Journal of Environmental Management, 2015,147:124-131.
[4]
Deng X, Chai L, Yang Z, et al.Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1.[J].Journal of Hazardous Materials, 2013,248-249(15):107-114.
[5]
邱秀文,周桂香,王天烽,等.氧化硫硫杆菌JJU-1生物淋滤去除污泥中的重金属[J].环境工程学报, 2017,11(9):5201-5206. Qiu X W, Zhou G X, Wang T F, et al.Bioleaching of heavy metal from sewage sludge by Thiobacillusthiooxidan JJU-1[J].Chinese Journal of Environmental Engineering, 2017,11(9):5201-5206.
[6]
华玉妹.污泥中Cu、Pb和Zn的生物沥滤研究[D].杭州:浙江大学, 2005. Hua Y Z.Bioleaching of Cu, Pb and Zn from Sewage Sludge [D].Hangzhou: Zhejiang University, 2005.
[7]
韩玉珠.生物沥滤对重金属存在形态变化及去除机理的研究[D].太原:太原理工大学, 2011. Han Y Z.Research on the Changes of Heavy Metals Morphology and the Removal Mechanism by Bio-leaching [D].Taiyuan: Taiyuan University of Technology, 2011.
[8]
甘莉,刘贺琴,王清萍,等.氧化亚铁硫杆菌生物浸出污泥中的重金属离子[J].中国环境科学, 2014,34(10):2617-2623. Gan L, Liu H Q, Wang Q P, et al.Bioleaching of heavy metals in sewage sludge using Acidithiobacillusferrooxidans [J].China Environmental Science, 2014,34(10):2617-2623.
[9]
叶茂友,严苹方,孙水裕,等.氧化亚铁硫杆菌生物浸出铅锌硫化矿尾矿及浸出过程中重金属形态分析研究[J].环境科学学报, 2016, 36(11):4102-4111. Ye M Y, Yan P F, Sun S Y, et al.Study on bioleaching of heavy metals in lead-zinc mine tailings byAcidithiobacillusferrooxidans and the transformation in the speciation of heavy metals during the bioleaching [J].Acta ScientiaeCircumstantiae, 2016,36(11):4102-4111.
[10]
GB 4284-2018农用污泥污染物控制标准[S]. GB 4284-2018 Control standards of pollutants in sludge for agricultural use [S].
[11]
GB 18918-2002城镇污水处理厂污染物排放标准[S]. GB 18918-2002 Standards for pollutants discharge from municipal WWTPs [S].
[12]
GB/T 23486-2009城镇污水处理厂污泥处置园林绿化用泥质[S]. GB/T 23486-2009 Disposal of sludge from municipal wastewater treatment plant-Quality of sludge used in gardens or parks [S].
[13]
CJ/T 291-2008城镇污水处理厂污泥处置土地改良用泥质[S]. GB/T 291-2008 Disposal of sludge from municipal wastewater treatment plant-Quality of sludge used in land improvement [S].
[14]
CJ/T 309-2009城镇污水处理厂污泥处置农用泥质[S]. CJ/T 309-2009 Disposal of sludge from municipal wastewater treatment plant—Control standard for agricultural use [S].
[15]
宋兴伟,周立祥.生物沥浸处理对城市污泥脱水性能的影响研究[J].环境科学学报, 2008,28(10):2012-2017. Song Y W, Zhou L X.Theinfluenceofbioleachingondewaterability ofmunicipalsewagesludge [J].Acta Scientiae Circumstantiae, 2008, 28(10):2012-2017.
[16]
朱海凤,周立祥,王电站.生物沥浸的酸化效应对城市污泥脱水性能的影响[J].环境科学, 2012,33(3):916-921. Zhu H F, Zhou L X, Wang D Z.Effect of Acidification on the Dewaterability of Sewage Sludge in Bioleaching [J].Environmental Science, 2012,33(3):916-921.
[17]
向少云.生物沥滤法对城市污泥中重金属去除及其对污泥脱水性能影响的研究[D].苏州:苏州科技大学, 2017. Xiang S Y.The influence of bioleaching on heavy metals and Dehydration Performance of municipal sewage sludge [D].Suzhou: Suzhou University of Science and Technology, 2017.
[18]
Chen Y X, Hua Y M, Zhang S H, et al.Transformation of heavy metal forms during sewage sludge bioleaching [J].Journal of Hazardous Materials, 2005,123(1-3):196-202.
[19]
邬思丹,刘云国,曾光明,等.表面活性剂强化污泥生物淋滤Cu、Zn的研究[J].中国环境科学, 2010,30(6):791-795. Wu S D, Liu Y G, Zeng G M, et al.Surfactant-enhanced bioleaching of Cu and Zn from sewage sludge [J].China Environmental Science, 2010,30(6):791-795.
[20]
Tessier A, Campbell P G C, Bisson M.Sequential extraction procedure for the speciation of particular trace elements [J].Environmental Technology, 1979,15(1):844-850.
[21]
杨题隆.新型杀菌剂唑菌酯在淹水土壤中的转化规律研究[D].杭州:浙江大学, 2014. Yang T L, Transformation of a new fungicide azoxystrobin in flooded soil [D].Hangzhou: Zhejiang University, 2014.
[22]
王爱萍.不同沉积环境中有机粘土复合体的比较研究及形成机制探讨[D].上海:同济大学, 2002. Wang A P, Comparative Study of Organoclay Complexes in Different Sedimentary Environments and Discussion on Formation Mechanism [D].Shanghai: Tongji University, 2002.
[23]
吕兑安.猪粪堆肥过程中重金属形态变化特征及钝化技术研究[D].北京:中国科学院研究生院, 2014. Lv D A.Speciation of heavy metals and technologies to reduce its bioavailability during composting of pig manure [D].Beijing: Chinese Academy of Sciences, 2014.
[24]
郭鹏然,雷永乾,蔡大川,等.广州城市污泥中重金属形态特征及其生态风险评价[J].环境科学, 2014,35(2):684-691. Guo P R, Lei Y Q, Cai D C, et al.Characteristics of Speciation and Evaluation of Ecological Risk of Heavy Metalsin Sewage Sludge of Guangzhou [J].Environmental Science, 2014,35(2):684-691.
[25]
谌书,杨远坤,廖广丹,等.黄钾铁矾类矿物生成对嗜酸氧化亚铁硫杆菌浸提废旧印刷线路板铜的影响[J].矿物学报, 2014,34(2): 189-193. Shen S, Yang Y K, Liao G D, et al.Effect of yellow potassium alumite minerals on the extraction of copper from waste printed circuit boards by acidophilus [J].Acta Mineralogica Sinica, 2014,34(2):189-193.
[26]
张军,盛媛,肖潇,等.城市污泥生物沥滤过程中重金属滤出途径的研究[J].环境工程, 2016,34(2):113-118. Zhang J, Sheng Y, Xiao X, et al.Leaching Pathwaysof Heavy Metalsduring Bioleachingof Sewage Sludge [J].Environmental Engineering, 2016,34(2):113-118.
[27]
杨期勇,邱秀文,程鹏飞,等.嗜酸性氧化硫硫杆菌的分离鉴定及其产酸特性[J].生态环境学报, 2015,24(8):1366-1374. Yang Q Y, Qiu X W, Chen P F, et al.Identification of an Acidithiobacillus Thiooxidan Strain and Its Characteristic of Acid Production [J].Ecology and Environmental Sciences, 2015,24(8): 1366-1374.