Vertical distribution of aerosol direct radiative forcing in dust events over north China
HOU Can1,2, ZHANG Feng3, HUANG Yong1,2, WU Wen-yu1,2, DENG Xue-liang1,2, TAO Ming-hui4
1. Anhui Province Key Laboratory of Atmospheric Sciences and Satellite Remote Sensing, Anhui Institute of Meteorological Sciences, Hefei 230031, China; 2. Huai River Basin Typical Farm Eco-meteorological Experiment Field of China Meteorological Administration, Shouxian National Climatology Observatory, Shouxian 232200, China; 3. Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; 4. Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Abstract:Using CALIOP data and SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model, the vertical distribution of aerosols and their direct radiative forcing in 8 dusty days between 2013 and 2016 in north China were studied. The effects of vertical distribution and optical properties on aerosol direct radiative forcing were also analyzed. The results showed that, the aerosols are concentrated from the surface to 3km, in which the dust particles are in the upper layer, while polluted continental aerosols and smoke are in the lower layer. The daily mean of aerosol direct radiative forcing is in -38.41~-88.44 W/m2 at the top of the atmosphere, and -74.03~-225.86W/m2 at the surface and 9.06~137.42W/m2 in the atmosphere, respectively. The aerosol direct radiative forcing is negative at 0~8km, and the magnitude gradually decreases as altitude. Vertical distribution has little effect on the magnitude of direct aerosol radiative forcing, but exhibits great influence on its vertical characteristics. The maximum difference of aerosol direct radiative forcing at the same altitude caused by the difference of aerosol profile can reach 31.18W/m2. The influence of aerosol optical depth and single scattering albedo on aerosol direct radiative forcing is obvious. When the extinction ability is the same, the attenuation effect of absorbing aerosols or with large backscattering ratio on short-wave sunlight is greater than that of scattering aerosols or with small backscattering ratio.
侯灿, 张峰, 黄勇, 吴文玉, 邓学良, 陶明辉. 华北地区沙尘天气垂直气溶胶直接辐射强迫[J]. 中国环境科学, 2020, 40(12): 5169-5181.
HOU Can, ZHANG Feng, HUANG Yong, WU Wen-yu, DENG Xue-liang, TAO Ming-hui. Vertical distribution of aerosol direct radiative forcing in dust events over north China. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(12): 5169-5181.
Charlson R J, Schwartz S E, Hales J M, et al. Climate forcing by anthropogenic aerosols[J]. Science, 1992,255(5043):423-430.
[2]
Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle[J]. Science, 2001,294(5549):2119-2124.
[3]
Ramanathan V, Li F, Ramana M V, et al. Atmospheric brown clouds:Hemispherical and regional variations in long-range transport, absorption, and radiative forcing[J]. Journal of Geophysical Research:Atmospheres, 2007,112,D22S21,doi:10.1029/2006JD008124.
[4]
Li Z Q. Aerosols and climate:a perspective over East Asia[M]//World scientific series on Asia-Pacific weather and climate|Observation, theory and modeling of atmospheric variability, 2004:501-525.
[5]
IPCC. Working group i contribution to the IPCC fifth assessment report (AR5). climate change 2013:the physical science basis. Final draft underlying scientific-technical assessment[R].
[6]
Claquin T, Schulz M, Balkanski Y, et al. Uncertainties in assessing radiative forcing by mineral dust[J]. Tellus Series B-chemical & Physical Meteorology, 1998,50(5):491-505.
[7]
Zhu A H, Ramanathan V, Li F, et al. Dust plumes over the Pacific, Indian, and Atlantic oceans:Climatology and radiative impact[J]. Journal of Geophysical Research Atmospheres, 2007,112(D16208):doi:10.1029/2007JD008427.
[8]
Meloni D, di Sarra A, Di Iorio T, et al. Influence of the vertical profile of Saharan dust on the visible direct radiative forcing[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005,93(4):397-413.
[9]
Chung C E, Ramanathan V, Kim D, et al. Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations[J]. Journal of Geophysical Research Atmospheres, 2005,110(D24207),doi:10.1029/2005JD006356.
[10]
陈勇航,毛晓琴,黄建平,等.一次强沙尘输送过程中气溶胶垂直分布特征研究[J]. 中国环境科学, 2009,29(5):449-454. Chen Y H, Mao X Q, Huang J P, et al. Vertical distribution characteristics of aerosol during a long-distance transport of heavy dust pollution[J]. China Environmental Science, 2009,29(5):449-454.
[11]
Guan H, Schmid B, Bucholtz A, et al. Sensitivity of shortwave radiative flux density, forcing, and heating rate to the aerosol vertical profile[J]. Journal of Geophysical Research:Atmospheres, 2010,115(D06209),doi:10.1029/2009JD012907.
[12]
邓涛,吴兑,邓雪娇,等.一次严重灰霾过程的气溶胶光学特性垂直分布[J]. 中国环境科学, 2013,33(11):1921-1928. Deng T, Wu D, Deng X J, et al. The vertical distribution of aerosol optical properties in a severe haze event[J]. China Environmental Science, 2013,33(11):1921-1928.
[13]
Noh Y M, Lee K, Kim K, et al. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia[J]. Atmospheric Environment, 2016,138:191-204.
[14]
高星星,陈艳,张武,等.2006~2015年中国华北地区气溶胶的垂直分布特征[J]. 中国环境科学, 2016,36(8):2241-2250. Gao X X, Chen Y, Zhang W, et al. Vertical distribution of atmospheric aerosol particles over North China from 2006 to 2015[J]. China Environmental Science, 2016,36(8):2241-2250.
[15]
许潇锋,邱金桓,牛生杰,等.近45年中国12个一级站大气气溶胶光学厚度变化特征[J]. 环境科学学报, 2009,29(3):488-495. Xu X F, Qiu J H, Niu S J, et al. Optical depth of the atmospheric aerosol at 12 stations in China over the past 45 years[J]. Acta Scientiae Circumstantiae, 2009,29(3):488-495.
[16]
徐祥德,施晓晖,张胜军,等.北京及周边城市群落气溶胶影响域及其相关气候效应[J]. 科学通报, 2005,50(22):2522-2530. Xu X D, Shi X H, Zhang S J, et al. Beijing and surrounding city community aerosol impact area and its related climatic effects[J]. Chinese Science Bulletin, 2005,50(22):2522-2530.
[17]
Holben B N, Eck T F, Slutsker I, et al. AERONET-a federated instrument network and data archive for aerosol characterization[J]. Remote Sensing of Environment, 1998,66(1):1-16.
[18]
Dubovik O, King M D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements[J]. Journal of Geophysical Research Atmospheres, 2000,105(D16):20673-20696.
[19]
Dubovik O, Holben B, Eck T F, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations[J]. Journal of the Atmosphere Sciences, 2002,59(3):590-608.
[20]
Vaughan M A, Powell K A, Kuehn R E, et al. Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements[J]. Journal of Atmospheric & Oceanic Technology, 2009,26(10):2034-2050.
[21]
Winker D M, Pelon J, Coakley J A J, et al. The CALIPSO mission:a global 3D view of aerosols and clouds[J]. Bulletin of the American Meteorological Society, 2010,91(9):1211-1229.
[22]
Yorks J E, Hlavka D L, Vaughan M A, et al. Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements, Part I:Spatial properties[J]. Journal of Geophysical Research Atmospheres, 2011,116(D19),doi:10.1029/2011JD015942.
[23]
Winker D M, Tackett J L, Getzewich B J, et al. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP[J]. Atmospheric Chemistry & Physics, 2013,13(6):3345-3361.
[24]
Peris-Ferrús C, Gómez-Amo J L, Marcos C, et al. Heating rate profiles and radiative forcing due to a dust storm in the Western Mediterranean using satellite observations[J]. Atmospheric Environment, 2017,160:142-153,http://dx.doi.org/10.1016/j.atmosenv. 2017.04.023.
[25]
廖国男.大气辐射导论(第二版)[M]. 北京:气象出版社, 2004:4-5. Liou K N. An introduction to atmospheric radiation (second edition)[M]. Beijing:China Meteorological Press, 2004:4-5.
[26]
Moorthy K K, Babu S S, Satheesh S K. Aerosol characteristics and radiative impacts over the Arabian Sea during the intermonsoon season:results from ARMEX field campaign[J]. Journal of the Atmospheric Sciences, 2005,62(1):192-206.
[27]
吴彬,张筱萌,王堰.气溶胶辐射强迫效率研究[J]. 大气与环境光学学报, 2013,8(4):253-261. Wu B, Zhang X M, Wang Y. Research of aerosol radiative forcing efficiency[J]. Journal of Atmospheric and Environmental Optics, 2013,8(4):253-261.
[28]
Li S Y, Zhang F, Yu Q R, et al. Comparison of three types of aerosol products during 2015~2017 in China[R]. ISPRS Workshop on Remote Sensing and Synergic Analysis on Atmospheric Environment, 2018.
[29]
Ricchiazzi P, Yang S, Gautier C, et al. SBDART:a research and teaching software tool for plane-parallel radiative transfer in the earth's atmosphere[J]. Bulletin of the American Meteorological Society, 1998,79(10):2101-2114.
[30]
Halthore R N, Crisp D, Schwartz S E, et al. Intercomparison of shortwave radiative transfer codes and measurements[J]. Journal of Geophysical Research Atmospheres, 2005,110(D11):1341-1355.
[31]
Bi J R, Huang J P, Fu Q, et al. Field measurement of clear-sky solar irradiance in Badain Jaran Desert of Northwestern China[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013,122(6):194-207.
[32]
Levelt P F, Van den Oord G H J, Dobber M R, et al. The ozone monitoring instrument[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006,44(5):1093-1101.
[33]
Levelt P F, Hilsenrath E, Leppelmeier G W, et al. Science objectives of the ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(5):1199-1208,doi:10.1109/TGRS.2006. 872336.
[34]
Justice C O, Vermote E, Townshend J R G, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS):land remote sensing for global change research[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002,36(4):1228-1249.
[35]
Schaaf C B, Gao F, Strahler A H, et al. First operational BRDF, albedo and nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 2002,83:135-148.
[36]
Liu Z, Liu D, Huang J, et al. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations[J]. Atmospheric Chemistry and Physics, 2008,8(16):5045-5060.
[37]
秦艳,章阮,籍裴希,等.华北地区霾期间对流层中低层气溶胶垂直分布[J]. 环境科学学报, 2013,33(6):1665-1671. Qin Y, Zhang R, Ji P X, et al. Vertical distribution of aerosols in middle and low troposphere in Northern China during haze periods[J]. Acta Scientiae Circumstantiae, 2013,33(6):1665-1671.
[38]
颜娇珑,张武.利用CALIPSO卫星资料对我国西北东部霾期间气溶胶垂直分布特征研究[EB/OL]. http://www.paper.edu. Yan J L, Zhang W. Study of aerosol distribution of haze over the eastern northwest China based on CALIPSO data[EB/OL]. http://www.paper.edu.
[39]
Tao M H, Chen L F, Su L, et al. Satellite observation of regional haze pollution over the North China Plain[J]. Journal of Geophysical Research Atmospheres, 2012,117(D12203):doi:10.1029/2012JD017915.
[40]
Tao M H, Chen L F, Xiong X Z, et al. Formation process of the widespread extreme haze pollution over northern China in January 2013:Implications for regional air quality and climate[J]. Atmospheric Environment, 2014,98:417-425.
[41]
张志薇,王宏斌,张镭,等.中国地区3个AERONET站点气溶胶直接辐射强迫分析[J]. 中国科学院大学学报, 2014,31(3):297-305. Zhang Z W, Wang H B, Zhang L, et al. Aerosol direct radiative forcing at three AERONET sites in China[J]. Journal of University of Chinese Academy of Sciences, 2014,31(3):297-305.
[42]
Yu X N, Lu R, Kumar K R, et al. Dust aerosol properties and radiative forcing observed in spring during 2001~2014 over urban Beijing, China[J]. Environmental Science & Pollution Research, 2016,23(15):15432-15442.
[43]
Huang J P, Fu Q, Su J, et al. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J]. Atmospheric Chemistry & Physics, 2009,9(12):4011-4021.
[44]
Liu J J, Zheng Y F, Li Z Q, et al. Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors[J]. Atmospheric Environment, 2011,45(35):6469-6480.
[45]
Wang W C, Huang J P, Zhou T, et al. Estimation of radiative effect of a heavy dust storm over northwest China using Fu-Liou model and ground measurements[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013,122(6):114-126.
[46]
孙乃秀,张镭,徐丽丽,等.黄土高原半干旱区典型日吸收性气溶胶综合观测分析[J]. 大气科学, 2018,42(2):323-338. Sun N X, Zhang L, Xu L L, et al. Comprehensive observations and analysis of absorptive aerosols on typical days in the semi-arid region of the Loess Plateau[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 2018,42(2):323-338.
[47]
Bi J R, Shi J S, Xie Y K, et al. Dust aerosol characteristics and shortwave radiative impact at a Gobi Desert of Northwest China during the spring of 2012[J]. Journal of the Meteorological Society of Japan, 2014,92A,33-56,doi:10.2151/jmsj.2014-A03.
[48]
衣娜娜,张镭,曹贤洁,等.SACOL黑碳和沙尘气溶胶辐射强迫分析[J]. 兰州大学学报:自然科学版, 2015,51(3):381-387. Yi N N, Zhang L, Cao X J, et al. Analysis of radiative forcing of black carbon and dust aerosol over SACOL[J]. Journal of Lanzhou University (Natural Sciences), 2015,51(3):381-387.
[49]
Haywood J M, Shine K P. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget[J]. Geophysical Research Letters, 1995,22(5):603-606.