Abstract:Uranium tailings were collected using the deep drilling engineering and were subsequently high-throughput sequencing on Illumina Miseq platform to characterize the microbial community in the dry uranium tailings pond, aiming at comprehensively revealing the three-dimensional spatial distribution of microbial community in the reservoir area and the correlation between the diversity of microbial community and environmental factors with long-term uranium exposure. Results showed a significant variation of the physical and chemical properties among the collected uranium tailings (P<0.05). Moreover, the diversity of microbial community in uranium tailings was declined in the radioactive environment. In the microbial community, the dominant bacterial taxa in uranium tailings at phylum level belonged to Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Genus Arthrobacter and Gp16 were tolerant of the radioactivity of uranium tailings. Redundancy analysis indicated that environmental factors including radionuclides U, 210Po, 210Pb, metals Mn Ca and pH, SO42-were the main drivers shifting the changes of microbial community in uranium tailings at different depths. The results revealed the succession pattern of microbial community with long-term exposure of radionuclides, providing a scientific value for further exploring potential bioremediation strains.
安毅夫, 孙娟, 高扬, 连国玺, 杨冰. 长期放射性环境下微生物群落多样性变化[J]. 中国环境科学, 2021, 41(2): 923-929.
AN Yi-fu, SUN Juan, GAO Yang, LIAN Guo-xi, YANG Bing. Variation of microbial community diversity with long-term exposure of radionuclides in dry uranium tailings pond. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(2): 923-929.
Liu B, Peng T J, Sun H J, et al. Release behavior of uranium in uranium mill tailings under environmental conditions[J]. Journal of Environmental Radioactivity, 2017,171(1):160-168.
[2]
Huang J H. Impact of microorganisms on arsenic biogeochemistry:A Review[J]. Water Air & Soil Pollution, 2014,225(2):1-25.
[3]
Richardson A E, Barea J M, Mcneill A M, et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant & Soil, 2009,321(1/2):305-339.
[4]
刘旻霞,蒋晓轩,李全弟,等.兰州北山不同植被土壤可培养微生物丰度变化特征及影响因素[J]. 中国环境科学, 2020,40(6):2683-2691.Liu M X, Jiang X X, Li Q D, et al. Characteristics and influencing factors of soils culturable microorganism abundance in different vegetation of Beishan, Lanzhou[J]. China Environmental Science, 2020,40(6):2683-2691.
[5]
曾涛涛,李利成,陈真,等.铀尾矿土壤细菌与古菌群落结构解析及耐铀菌分离鉴定[J]. 中国有色金属学报, 2018,28(11):2383-2392.Zeng T T, Li L C, Chen Z, et al. Microbial community of bacteria and archaea analysis in uranium tailing and uranium-resistant bacteria isolation[J]. Chinese Journal of Nonferrous Metals, 2018,28(11):2383-2392.
[6]
Sun M, Xiao T F, Ning Z P, et al. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water[J]. Applied Microbiology & Biotechnology, 2015,99(6):2911-2922.
[7]
卢鑫萍,杜茜,闫永利,等.盐渍化土壤根际微生物群落及土壤因子对AM真菌的影响[J]. 生态学报, 2012,32(13):4071-4078.Lu X P, Du Q, Yan Y L, et al. Effects of soil rhizosphere microbial community and soil factors on arbuscular mycorrhizal fungi in different salinized soils[J]. Acta Ecologica Sinica, 2012,32(13):4071-4078.
[8]
Lavrentyev P J, Gardner W S, Yang L Y. Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment-water interface[J]. Aquatic Microbial Ecology, 2000,21(2):187-194.
[9]
Rita B, Ana P C, Veríssimo A, et al. Impact of chromium-contaminated wastewaters on the microbial community of a river[J]. Fems Microbiology Ecology, 2005,54(1):35-46.
[10]
朱捷,何微,陈晓明,等.湖南衡阳铀尾矿库中微生物分布调查及优势菌鉴定[J]. 安全与环境学报, 2013,13(1):108-112.Zhu J, He W, Chen X M, et al. Investigation of the microbial distribution and identification of single isolates of uranium tailing impoundment in Hunan[J]. Journal of Safety and Environment, 2013, 13(1):108-112.
[11]
王丽超,罗学刚,彭芳芳,等.铀尾矿污染土壤微生物活性及群落功能多样性变化[J]. 环境科学与技术, 2014,37(3):25-31.Wang L C, Luo X G, Peng F F, et al. Changes of microbial activity and functional diversity of contaminated soil microbes community in uranium tailings[J]. Chinese Journal of Environmental Science & Technology, 2014,37(3):25-31.
[12]
Michalsen M M, Peacock A D, Spain A M, et al. Changes in microbial community composition and geochemistry during uranium and technetium bioimmobilization[J]. Applied and Environmental Microbiology, 2007,73(18):5885-5896.
[13]
Xu M Y, Wu W M, Wu L Y, et al. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation[J]. Isme Journal, 2010,4(8):1060-1070.
[14]
Tyson G W, Chapman J, Hugenholtz P, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment[J]. Nature, 2004,428(6978):37-43.
[15]
黄福琴.射气闪烁法测定海水中的镭-226[J]. 中国辐射卫生, 2017,26(3):357-358.Huang F Q. Determination of radium-226in sea water by emanation scintillation[J]. Chinese Journal of Radiological Health, 2017,26(3):357-358.
[16]
彭安国,黄奕普.九龙江河口区TEP及其与铀、钍、钋同位素相关性的研究[J]. 厦门大学学报:自然科学版, 2007,46(1):38-42.Peng A G, Huang Y P. Study on TEP and its relationships with uranium, thorium, polonium isotopes in Jiulong Estuary[J]. Journal of Xiamen University (Natural Science), 2007,46(1):38-42.
[17]
鲍士旦.土壤农化分析(第三版)[M]. 北京:中国农业出版社, 2000.Bao S D. Soil agrochemical analysis[M]. the 3rd ed. Beijing:China Agricultural Press, 2000.
[18]
Emily J C, Omid R Z, Jeffrey B, et al. Investigating responses of soil bacterial community composition to hardwood biochar amendment using high-throughput PCR sequencing[J]. Applied Soil Ecology, 2019,136(12):62-70.
[19]
Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature methods, 2010,7(5):335-336.
[20]
Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200.
[21]
Edgar R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010,26(19):2460-2461.
[22]
黄健,朱旭炎,陆金,等.狮子山矿区不同土地利用类型对土壤微生物群落多样性的影响[J]. 环境科学, 2019,40(12):5550-5560.Huang J, Zhu X Y, Lu J, et al. Effects of different land use types on microbial community diversity in the Shizishan Mining Area[J]. Environmental Science, 2019,40(12):5550-5560.
[23]
朱世硕,夏彬,郝旺林,等.黄土区侵蚀坡面土壤微生物群落功能多样性研究[J]. 中国环境科学, 2020,40(9):4099-4105.Zhu S S, Xia B, Hao W L, et al. Functional diversity of soil microbial community on eroded slope in the Loess Plateau Region[J]. China Environmental Science, 2020,40(9):4099-4105.
[24]
Zeng T T, Mo G H, Hu Q, et al. Microbial characteristic and bacterial community assessment of sediment sludge upon uranium exposure[J]. Environmental Pollution, 2020,261(4):114176.
[25]
王志章.铀尾矿库的退役环境治理[J]. 铀矿冶, 2003,22(2):40-44.Wang Z Z. The environmental improvement of decommissioning uranium tailings impoundment[J]. Uranium Mining and Metallurgy, 2003,22(2):40-44.
[26]
Yin M L, Sun J, Chen Y H. Mechanism of uranium release from uranium mill tailings under long-term exposure to simulated acid rain:Geochemical evidence and environmental implication[J]. Environmental Pollution, 2019,244:174-181.
[27]
吴晓艳,熊正为,彭小勇,等.降雨对铀尾矿库地下水中核素迁移影响的模拟研究[J]. 安全与环境学报, 2013,13(1):92-95.Wu X Y, Xiong Z W, Peng X Y, et al. Simulation research on the effects of precipitation on the nuclide migration in the groundwater of the uranium tailings impoundment[J]. Journal of Safety and Environment, 2013,13(1):92-95.
[28]
Wang X, Selvam A, Lau S S S, et al. Influence of lime and struvite on microbial community succession and odour emission during food waste composting[J]. Bioresource Technology, 2018,247:652-659.
[29]
Xue D, Huang X D, Yao H Y, et al. Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils[J]. Journal of Environmental Sciences, 2010,22(8):1253-1260.
[30]
Sar P, Dhal P K, Islam E, et al. Molecular assessment of microbial diversity and community structure at uranium mines of Jaduguda, India[J]. Advanced Materials Research, 2007,(20/21):413-416.
[31]
Xue K, Wu L Y, Deng Y, et al. Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands[J]. Applied & Environmental Microbiology, 2013,79(4):1284-1292.
[32]
Monson R K, Lipson D L, Burns S P, et al. Winter forest soil respiration controlled by climate and microbial community composition[J]. Nature, 2006,439(7077):711-714.
[33]
Rodionov D A, Dubchak I, Arkin A, et al. Reconstruction of regulatory and metabolic pathways in metal-reducing δ-proteobacteria[J]. Genome biology, 2004,5(11):90.
[34]
Bouskill N J, Barker F J, Galloway T S, et al. Temporal bacterial diversity associated with metal-contaminated river sediments[J]. Ecotoxicology, 2010,19(2):317-328.
[35]
Lovley D R, Phillips E J P. Bioremediation of uranium contamination with enzymic uranium reduction[J]. Environmental Science and Technology, 2001,26(11):1451-1465.
[36]
刘金香.奥奈达希瓦氏菌铀(Ⅵ)还原能力的增强机制及应用基础研究[D]. 衡阳:南华大学, 2015.Liu J X. Study on mechanism and fundamental application of U(VI) reduction by Shewanella oneidensis[D]. Hengyang:University of South China, 2015.
[37]
Lovley D R, Phillips E J P. Reduction of uranium by Desulfovibrio desulfuricans[J]. Applied & Environmental Microbiology, 1992, 58(3):850-856.
[38]
Chabalala S, Chirwa E M N. Uranium(Ⅵ) reduction and removal by high performing purified anaerobic cultures from mine soil[J]. Chemosphere, 2010,78(1):52-55.
[39]
Witter E, Gong P, Erland Bååth, et al. A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications[J]. Environmental Toxicology and Chemistry, 2000,19(8):1983-1991.