Abstract:To explore the effects of dichloroacetonitrile (DCAN) on gene expression of E.coli and corresponding toxic effect, the gene expression of E.coli under different dosages of DCAN for 120min was identified by self-organizing map (SOM) clustering and dose-response relationship. The results showed that the genes expression was dynamically affected under varied exposure time and concentration of DCAN. When the concentration of DCAN was 1.429×10-3mg/L, the activity of multiple gene promoter included in SOS response regulation, oxidative and general stress had been changed. These consequences further resulted in DNA damage and more severe oxidative stress on the cells, made them bio-chemically and physically unstable. The results also clarified that DNA damage is the main toxic mode of DCAN through different pathways.
Mughal F H. Chlorination of drinking water and cancer:a review[J]. Journal of Environmental Pathology, Toxicology, Oncology, 1992,11(5/6):287-292.
[2]
Han J, Zhang X, Liu J, et al. Characterization of halogenated DBPs and identification of new DBPs trihalomethanols in chlorine dioxide treated drinking water with multiple extractions[J]. Journal of Environmental Sciences (China), 2017,58:83-92.
[3]
林英姿,刘雪瑶.饮用水中氯化消毒副产物的研究进展[J]. 中国资源综合利用, 2017,35(8):128-130. Lin Y Z, Liu X Y. Research progress of chlorination and disinfection by-products in drinking water[J]. China Resources Comprehensive Utilization, 2017,35(8):128-130.
[4]
丁春生,陈嘉都,李东兵,等.饮用水中消毒副产物二溴乙腈的形成机制[J]. 中国环境科学, 2017,37(11):4173-4178. Ding C S, Chen J D, Li D B, et al. Formation mechanism of the disinfection by-product dibromoacetonitrile in drinking water[J]. China Environmental Science, 2017,37(11):4173-4178.
[5]
丁春生,李东兵,王卫文,等.零价铁去除饮用水中BCAN的研究[J]. 浙江工业大学学报, 2015,43(5):587-590. Ding C S, Li D B, Wang W W, et al. Performance of BCAN degradation using iron scraps[J]. Journal of Zhejiang University of Technology, 2015,43(5):587-590.
[6]
Plewa M J, Muellner M G, Richardson S D, et al. Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides:an emerging class of nitrogenous drinking water disinfection byproducts[J]. Environmental Science & Technology, 2008,42(3):955-961.
[7]
张颖,韩雪梅.饮用水中卤乙腈(HANs)类消毒副产物研究现状与进展[J]. 安全与环境学报, 2017,17(3):1183-1189. Zhang Y, Han X M. Research review on the progress of haloacetonitriles (HANs) in drinking water[J]. Journal of Safety and Environment, 2017,17(3):1183-1189.
[8]
李芳,董颖,田圩虹,等.饮用水消毒副产物卤乙腈神经毒性及其机制的研究进展[J]. 环境与健康杂志, 2018,35(6):94-97. Li F, Dong Y, Tian W H, et al. Neurotoxicity of haloacetonitriles, disinfection by-product in drinking water:a review of recent studies[J]. Journal of Environment and Health, 2018,35(6):94-97.
[9]
翟家欣,张欣然,杨欣.新型含氮消毒副产物的生成机制及毒性研究进展[J]. 生态毒理学报, 2020,15(1):17-33. Zhai J X, Zhang X R, Yang X. Research overview on formation mechanism and toxicity for emerging nitrogenous disinfection byproducts[J]. Asian Journal of Ecotoxicology, 2020,15(1):17-33.
[10]
Jaichuedee J, Wattanachira S, Musikavong C. Kinetics of the formation and degradation of carbonaceous and nitrogenous disinfection by-products in Bangkok and Songkhla source waters[J]. The Science of the Total Environment, 2020,703:134888.
[11]
Xu J, Kralles Z T, Hart C H, et al. Effects of sunlight on the formation potential of dichloroacetonitrile and bromochloroacetonitrile from wastewater effluents[J]. Environmental Science and Technology, 2020,54(6):3245-3255.
[12]
颜勇,谭治雯,林涛.生物活性炭工艺对二氯乙腈生成势去除机理[J]. 净水技术, 2018,37(12):52-58. Yan Y, Tan Y W, Lin T. Removal mechanism of dichloroacetonitrile formation potential by biological activated carbon process[J]. Water Purification Technology, 2018,37(12):52-58.
[13]
Xue B, Dai K, Zhang X, et al. Low-concentration of dichloroacetonitrile (DCAN) in drinking water perturbs the health-associated gut microbiome and metabolic profile in rats[J]. Chemosphere, 2020,258:127067.
[14]
Mohamadin A M. Possible role of hydroxyl radicals in the oxidation of dichloroacetonitrile by Fenton-like reaction[J]. Journal of Inorganic Biochemistry, 2001,84(1/2):97-105.
[15]
Esmat A, Ghoneim A I, El-Demerdash E, et al. Dichloroacetonitrile induces oxidative stress and developmental apoptotic imbalance in mouse fetal brain[J]. Environmental Toxicology Pharmacology, 2012, 33(1):78-84.
[16]
Muellner M G, Wagner E D, Mccalla K, et al. Haloacetonitriles vs. regulated haloacetic acids:are nitrogen-containing DBPs more toxic?[J]. Environmental Science and Technology, 2007,41(2):645-651.
[17]
翟璐,罗皓,叶美洁,等.二氯乙腈对HepG2细胞凋亡的影响[J]. 环境卫生学杂志, 2016,6(4):255-258. Zhai L, Luo H, Ye M J, et al. Dichloroacetonitrile effect on HepG2 cells apoptosis[J]. Journal of Environmental Hygiene, 2016,6(4):255-258.
[18]
翟璐,梁海荣,刘雨果,等.二氯乙腈对LO2细胞周期的影响及其相关调控机制的研究[J]. 环境与健康杂志, 2018,35(1):17-20. Zhai L, Liang H R, Liu Y G, et al. Effects of dichloroacetonitrile on cell cycle of LO2 and related regulatory mechanism[J]. Journal of Environment and Health, 2018,35(1):17-20.
[19]
孟紫强,桑楠,张波.二氧化硫体内衍生物诱发CHL细胞染色体畸变效应[J]. 中国环境科学, 2000,20(1):8-12. Meng Z Q, Sang N, Zhang B. Induced effects of the in vivo derivatives of sulfur dioxide on chromosomal aberration in CHL cells[J]. China Environmental Science, 2000,20(1):8-12.
[20]
刘怡.三种PPCPs类药物对293T细胞及斑马鱼的毒理效应研究[D]. 北京:中国科学院大学, 2018. Liu Y. Studies on the toxicological effects of three PPCPs pharmaceuticals on 293T cells and zebrafish[D]. Beijing:University of Chinese Academy of Sciences, 2018.
[21]
Ying D, Fang L, Haijun S, et al. Evaluation of the water disinfection by-product dichloroacetonitrile-induced biochemical, oxidative, histopathological, and mitochondrial functional alterations:Subacute oral toxicity in rats[J]. Toxicology and Industrial Health, 2018,34(3):158-168.
[22]
郭婧颖,刘建超,李帅衡,等.双酚AF对大型溞生殖、生长等生态行为的影响[J]. 中国环境科学, 2019,39(10):4394-4400. Guo Q Y, Liu J C, Li S H, et al. Influences of bisphenol AF on the reproduction and growth of Daphnia magna[J]. China Environmental Science, 2019,39(10):4394-4400.
[23]
Mezencev R, Subramaniam R. The use of evidence from high-throughput screening and transcriptomic data in human health risk assessments[J]. Toxicology and Applied Pharmacology, 2019,380:114706.
[24]
Lan J, Rahman S M, Gou N, et al. Genotoxicity assessment of drinking water disinfection byproducts by DNA damage and repair pathway profiling analysis[J]. Environmental Science & Technology, 2018,52(11):6565-6575.
[25]
Zaslaver A, Bren A, Ronen M, et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli [J]. Nature Methods, 2006,3(8):623-628.
[26]
王海波,欧俊杰,耿信笃.重组大肠杆菌生产rhG-CSF发酵工艺的研究[J]. 宁夏大学学报(自然科学版), 2004,25(2):161-163. Wang H O, Ou J J, Geng X D. Studies on the culture conductions of recombinant Escherichia coli producing rhG-CSF[J]. Journal of Ningxia University (Natural Science Edition), 2004,25(2):161-163.
[27]
吴波.大肠杆菌(E.coli)冷激蛋白CspA启动子区调控表达机制初探[D]. 长春:东北师范大学, 2007. Wu B. The primary study on the regulation mechanism of the E.coli cold shock protein A promoter region[D]. Changchun:Northeast Normal University, 2007.
[28]
Alshareef, A, Laird, K., Cross, R. B. M. Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium[J]. Applied Surface Science, 2017,424:310-315.
[29]
Liu H F, Chen L P, Si W, et al. Physiology and pathogenicity of cpdB deleted mutant of avian pathogenic Escherichia coli [J]. Research in Veterinary Science, 2017,111:21-25.
[30]
Onnis-Hayden A, Weng H, Miao H E, et al. Prokaryotic real-time gene expression profiling for toxicity assessment[J]. Environmental Science & Technology, 2009,43(12):4574-4581.
[31]
Gou N, Gu A Z. A New Transcriptional effect level index (TELI) for toxicogenomics-based toxicity assessment[J]. Environmental Science & Technology, 2011,45(12):5410-5417.
[32]
Gao C, Weisman D, Gou N, et al. Analyzing high dimensional toxicogenomic data using consensus clustering[J]. Environmental Science & Technology, 2012,46(15):8413-8421.
[33]
Saeed A I, Sharov V, White J, et al. TM4:a free, open-source system for microarray data management and analysis[J]. Biotechniques, 2003,34(2):374-378.
[34]
Kraithong T, Channgam K, Itsathitphaisarn O, et al. Movement of the β-hairpin in the third zinc-binding module of UvrA is required for DNA damage recognition[J]. DNA Repair, 2017,51:60-69.
[35]
Zhang J, Xing X, Herr A B, et al. Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks[J]. Structure, 2009,17(5):690-702.
[36]
Lin T, Zhou D, Dong J, et al. Acute toxicity of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), on zebrafish (Danio rerio)[J]. Ecotoxicology & Environmental Safety, 2016,133(11):97-104.
[37]
Muller-Pillet V, Joyeux M, Ambroise D, et al. Genotoxic activity of five haloacetonitriles:comparative investigations in the single cell gel electrophoresis (comet) assay and the Ames-fluctuation test[J]. Environmental & Molecular Mutagenesis, 2015,36(1):52-58.
[38]
Lipscomb J C, El-Demerdash E, Ahmed A E. Haloacetonitriles:metabolism and toxicity[J]. Reviews of Environmental Contamination & Toxicology, 2009,198:169-200.
[39]
Ahmed A E, Aronson J, Jacob S. Induction of oxidative stress and TNF-alpha secretion by dichloroacetonitrile, a water disinfectant by-product, as possible mediators of apoptosis or necrosis in a murine macrophage cell line (RAW)[J]. Toxicology in Vitro, 2000,14(3):199-210.
[40]
Walker G C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli.[J]. Microbiological Reviews, 1984, 48(1):60-93.
[41]
孟紫强.环境毒理学基础[M]. 北京:高等教育出版社, 2010:44-47. Meng Z Q. Fundamentals of environmental toxicology[M]. Beijing:Higher Education Press, 2010:44-47.
[42]
陈智勇,刘波,邓杰.剂量效应曲线的累积正态分布拟合[J]. 华西药学杂志, 2007,22(1):62-64. Chen Z Y, Liu B, Deng J. Fitting dose-effect curve with the accumulation normal distribution[J]. West China Journal Of Pharmaceutical Sciences, 2007,22(1):62-64.