Identification of groundwater contamination sources considering parameter uncertainty
LI Jiu-hui1,2,3, LU Wen-xi1,2,3, CHANG Zhen-bo1,2,3, WANG Han1,2,3, FAN Yue1,2,3
1. Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, China; 2. Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; 3. College of New Energy and Environment, Jilin University, Changchun 130021, China
Abstract:To analyze the influence of parameter uncertainty on the identification of groundwater contamination sources, a calculation model describing the relationship between hydraulic conductivity and contaminant release intensity was established through the comprehensive application of the simulation-based optimization method, sensitivity analysis method, Monte Carlo method and Kriging method. The results showed that the calculation model had high accuracy, the certainty coefficient and average relative error were 0.9895 and 4.51%, respectively; the contamination sources identification results under the influence of 8000 groups of hydraulic conductivity were calculated with the new model, which brought about 99% saving in the calculation load and time. Through quantitative statistical analysis of 8000 groups of contamination sources identification results, the contamination sources with the highest probability density were identified, along with the confidence intervals of contamination sources identification results corresponding to 80%, 60%, 40% and 20%. This study improved the applicability of simulation-based optimization method to identify groundwater contamination sources when facing the disadvantage caused by the parameter uncertainty, thus, can provide more reference for decision makers.
王景瑞,胡立堂.地下水污染源识别的数学方法研究进展[J]. 水科学进展, 2017,28(6):943-952. Wang J R, Hu L T. Advances in mathematical methods of groundwater pollution source identification[J]. Advances in Water Science, 2017, 28(6):943-952.
[2]
Snodgrass, M F, Kitanidis P K. A geostatistical approach to contaminant source identification[J]. Water Resources Research, 1997,33(4):537-546.
[3]
Lapworth D J, Baran N, Stuart M E, et al. Emerging organic contaminants in groundwater:A review of sources, fate and occurrence[J]. Environmental Pollution, 2012,163(4):287-303
[4]
Xing Z X, Qu R, Zhao Y, et al. Identifying the release history of a groundwater contaminant source based on an ensemble surrogate model[J]. Journal of Hydrology, 2019,572:501-516.
[5]
Gorelick S M, Evans B, Remson I. Identifying sources of groundwater pollution:An optimization approach[J]. Water Resources Research, 1983,19(3):779-790.
[6]
Mirghani B Y, Mahinthakumar K G, Tryby M E. A parallel evolutionary strategy based simulation-optimization approach for solving groundwater source identification problems[J]. Advances in Water Resources, 2009,32(9):1373-1385.
[7]
Datta B, Chakrabarty D, Dhar A. Identification of unknown groundwater pollution sources using classical optimization with linked simulation[J]. Journal of Hydro-environment Research, 2011,5(1):25-36.
[8]
江思珉,张亚力,蔡奕,等.单纯形模拟退火算法反演地下水污染源强度[J]. 同济大学学报(自然科学版), 2013,41(2):253-257. Jiang S M, Zhang Y L, Cai Y, et al. Groundwater contamination identification by hybrid simplex method of simulated annealing[J]. Journal of Tongji university (Natural science), 2013,41(2):253-257.
[9]
江思珉,张亚力,周念清,等.基于污染羽形态对比的地下水污染源识别研究[J]. 水利学报, 2014,45(6):735-74. Jiang S M, Zhang Y L, Zhou N Q, et al. Groundwater contaminant source identification based on the morphological comparison of pollution plume[J] Journal of Hydraulic Engineering, 2014,45(6):735-74.
[10]
肖传宁,卢文喜,赵莹,等.基于径向基函数模型的优化方法在地下水污染源识别中的应用[J]. 中国环境科学, 2016,36(7):2067-2072. Xiao C N, Lu W X, Zhao Y, et al. Optimization method of identification of groundwater pollution sources based on radial basis function model[J]. China Environmental Science, 2016,36(7):2067-2072.
[11]
侯泽宇,卢文喜,王宇.基于替代模型的地下水DNAPLs污染源反演识别[J]. 中国环境科学, 2019,39(1):188-195. Hou Z Y, Lu W X, Wang Y. Surrogate-based source identification of DNAPLs-contaminated groundwater[J]. China Environmental Science, 2019,39(1):188-195.
[12]
Zhao Y, Lu W X, An Y K. Surrogate model-based simulation-optimization approach for groundwater source identification problems[J]. Environmental Forensics, 2015,16(3):296-303
[13]
肖传宁,卢文喜,安永凯,等.基于两种耦合方法的模拟-优化模型在地下水污染源识别中的对比[J]. 中国环境科学, 2015,35(8):2393-2399. Xiao C N, Lu W X, An Y K, et al. Simulation-optimization model of identification of groundwater pollution sources based on two coupling method[J]. China Environmental Science, 2015,35(8):2393-2399.
[14]
束龙仓,陶玉飞,刘佩贵.考虑水文地质参数不确定性的地下水补给量可靠度计算[J]. 水利学报, 2008,(3):346-350. Shu L C, Tao Y F, Liu P G. Reliability calculation method for groundwater recharge in consideration of uncertainty of hydrogeological parameters[J]. Journal of Hydraulic Engineering, 2008,(3):346-350.
[15]
吴雯倩,靳孟贵.淮北市地下水流数值模拟及水文地质参数不确定性分析[J]. 水文地质工程地质, 2014,41(3):21-28. Wu W Q, Jin M G. An analysis of period features of groundwater micro-dynamics in the North China Plain[J]. Hydrogeology & Engineering Geology, 2014,41(3):21-28.
[16]
吴义忠,陈立平.多领域物理系统的仿真优化方法[M]. 科学出版社, 2011. Wu Y Z, Cheng L P. Simulation optimization method of multi domain physical system[M]. Science Press, 2011.
[17]
李久辉,卢文喜,常振波,等.基于不确定性分析的地下水污染超标风险预警[J]. 中国环境科学, 2017,37(6):2270-2277. Li J H, Lu W X, Chang Z B, et al. Risk prediction of groundwater pollution based on uncertainty analysis[J]. China Environmental Science, 2017,37(6):2270-2277.
[18]
尹增谦,管景峰,张晓宏,等.蒙特卡罗方法及应用[J]. 物理与工程, 2002,(3):45-49. Yin Z Q, Guan J F, Zhang X H, et al. The Monte Carlo method and its application[J]. Physics and Engineering, 2002,(3):45-49.
[19]
朱辉,刘义保,游运.蒙特卡罗方法与拟蒙特卡罗方法的历史、现状及展望[J]. 东华理工大学学报(自然科学版), 2010,33(4):357-362. Zhu H, Liu Y B, You Y. Monte Carlo method and quasi Monte Carlo method[J]. Journal of East China University of Technology (Natural Science), 2010,33(4):357-362.
[20]
Ayvaz M T. A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems[J]. Journal of Contaminant Hydrology, 2010,117(1-4):46-59.
[21]
常振波,卢文喜,辛欣,等.基于灵敏度分析和替代模型的地下水污染风险评价方法[J]. 中国环境科学, 2017,37(1):167-173. Chang Z B, Lu W X, Xin X, et al. Risk prediction of groundwater pollution based on uncertainty analysis[J]. China Environmental Science, 2017,37(1):167-173.
[22]
Parnianifard A, Azfanizam A S, Ariffin M K A, et al. Comparative study of metamodeling and sampling design for expensive and semi-expensive simulation models under uncertainty[J]. Simulation-Transactions of the Society for Modeling and Simulation Interational, 2020,96(1):89-110.
[23]
施小清,吴吉春,姜蓓蕾,等.基于LHS方法的地下水流模型不确定性分析[J]. 水文地质工程地质, 2009,36(2):1-6. Shi X Q, Wu J C, Jiang B L, et al. Uncertainty analysis of groundwater models based on the Latin Hypercube sampling technique[J]. Hydrogeology & Engineering Geology, 2009,36(2):1-6.
[24]
苗添升,卢文喜,欧阳琦,等.地下水数值模拟的不确定性分析在水质预测中的应用[J]. 水电能源科学, 2016,34(8):20-23,44. Miao T S, Lu W X, Ouyang Q, et al. Application of uncertainty analysis of groundwater numerical simulation in water quality prediction[J]. Water Resources and Power, 2016,34(8):20-23,44.
[25]
Guo J Y, Lu W X, Yang Q C, et al. The application of 0~1mixed integer nonlinear programming optimization model based on a surrogate model to identify the groundwater pollution source[J]. Journal of Contaminant Hydrology, 2018,220:18-25.