Abstract:Chlorella vulgaris FACHB-25 was mutated by atmospheric and room temperature plasma under different power conditions. Three dominant strains were screened out under the power of 100W and 120W, and they were numbered S100-7, S120-4 and S120-9 in turn. Among them, the biomass of the S120-9 algae strain increased significantly at the end of the period, and the polysaccharide production was 1.34times that of the original algae strain, reaching 237.98mg/L; the carbohydrate content of S120-4 accounted for 37.55%, which was 43.48% higher than the original algae strain. The differences of photosynthetic performance, cell composition and cell morphology among different strains were compared. Through simultaneous saccharification and fermentation (SSF), the ethanol yield of S120-4 strain with the highest carbohydrate content reached 1.58g/10g, but its biomass accumulation was limited. Considering the biomass accumulation, the highest ethanol yield per unit volume of S120-9 was 0.1033g/L.
孙哲, 孙昕, 李鹏飞, 刘明文, 李盟, 张清宇. 基于提高乙醇产率的常压室温等离子体微藻诱变育种[J]. 中国环境科学, 2021, 41(8): 3733-3739.
SUN Zhe, SUN Xin, LI Peng-fei, LIU Ming-wen, LI Meng, ZHANG Qing-yu. Mutation breeding of microalgae by atmospheric and room temperature plasma based on improving ethanol yield. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(8): 3733-3739.
王鹏翔,廖莎,师文静,等.微藻生物质生产燃料乙醇技术进展[J]. 当代化工, 2019,48(8):1842-1845. Wang P X, Liao S, Shi W J, et al. Research progress of production technology of fuel ethanol by microalgae biomass[J]. Contemporary Chemical Industry, 2019,48(8):1842-1845.
[2]
曹运齐,刘云云,胡南江,等.燃料乙醇的发展现状分析及前景展望[J]. 生物技术通报, 2019,35(4):163-169. Cao Y Q, Liu Y Y, Hu N J, et al. Current status and prospects of fuel ethanol production[J]. Biotechnology Bulletin, 2019,35(4):163-169.
[3]
刘积光,李昂,刘平怀,等.热带海洋富油微藻Desmodesmus sp.WC08油脂产率的响应面法优化研究[J]. 中国油脂, 2018,43(4):96-100. Liu J G, Li A, Liu P H, et al. Optimization of oil yield of tropical rich in oil microalgae Desmodesmus sp. WC08 by response surface methodology[J]. China Oils and Fats, 2018,43(4):96-100.
[4]
Marcella F, Marcoaurélio A R, Elba P, et al. Interference of starch accumulation in microalgal cell growth measurement[J]. Springer Netherlands, 2019,31(1):249-254.
[5]
Li T, Gargouri M, Jie F, et al. Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana[J]. Bioresour. Technology, 2015,180:250-257.
[6]
Yuan Y Z, Liu H, Li X Y, et al. Enhancing carbohydrate productivity of Chlorella sp AE10 in semi-continuous cultivation and unraveling the mechanism by flow cytometry[J]. Applied Biochemistry and Biotechnology, 2018,185(2):419-433.
[7]
Claire T, Christelle T, Pascal T, et al. Atmospheric pressure plasmas:A review[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2005, 61(1):2-30.
[8]
陈建楠,陈由强,薛婷.利用UV和ARTP诱变筛选优良性状的球等鞭金藻[J]. 福建农业科技, 2020,(2):9-16. Chen J N, Chen Y Q, Xue T. Mutation screening of Isochrysis Galbana with excellent characters by using UV and ARTP treatments[J]. Fujian Agricultural Science and Technology, 2020,(2):9-16.
[9]
Gu C, Wang G, Mai S, et al. ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production[J]. Applied Microbiology & Biotechnology, 2017,101(5):2189-2199.
[10]
Cao S, Zhou X, Jin W B, et al. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP)[J]. Bioresource Technology, 2017, 244(2):1400-1406.
[11]
Zhang Y, He M, Zou S, et al. Breeding of high biomass and lipid producing Desmodesmus sp. by ethylmethane sulfonate-induced mutation[J]. Bioresource Technology, 2016,207:268-275.
[12]
Sun X, Li P F, Liu X S, et al. Strategies for enhanced lipid production of Desmodesmus sp. mutated by atmospheric and room temperature plasma with a new efficient screening method[J]. Journal of Cleaner Production, 2019,250:119509-119519.
[13]
刘红全,袁莎,卢雨欣,等.基因组改组技术快速提高拟微绿球藻油脂含量[J]. 中国油脂, 2018,43(2):115-119. Liu H Q, Yuan S, Lu Y X, et al. Genome shuffling for rapid improvement of lipid content of Nannochloropsis oculata[J]. China Oils and Fats, 2018,43(2):115-119.
[14]
Giorgio P, Alessandra B, Anna S, et al. Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production[J]. Biotechnology for Biofuels, 2015,8(1):161-173.
[15]
闫春宇,胡冰涛,王素英.常压室温等离子体诱变对螺旋藻中氨基酸成分的影响[J]. 食品与发酵工业, 2017,43(1):60-65. Yan C Y, Hu B T, Wang S Y. Effect of Plasma mutation at atmospheric pressure and room temperature on amino acids in Spirulina[J]. Food and Fermentation Industries, 2017,43(1):60-65.
[16]
梁英,闫译允,赖秋璇,等.微藻诱变育种研究进展[J]. 中国海洋大学学报(自然科学版), 2020,50(6):19-32. Liang Y, Yan Y Y, Lai Q X, et al. Researching advances in microalgal mutation breeding[J]. Periodical of Ocean University of China, 2020,50(6):19-32.
[17]
Liu B, Sun Z, Ma X N, et al. Mutation breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma[J]. International Journal of Molecular Sciences, 2015,16(4):8201-8212.
[18]
Fang M, Jin L, Chong Z, et al. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes[J]. PLOS ONE, 2013,8(10):e77046-e77057.
[19]
Chai K P, Chew K W, Sebayang A H, et al. Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae[J]. Biotechnology for Biofuels, 2019, 12(1):191-198.
[20]
Chan Y, Jun S Y, Lee J Y, et al. Selection of microalgae for lipid production under high levels carbon dioxide[J]. Bioresour Technol, 2010,101(1):S71-S74.
[21]
Schüler L, Morais E, Trovo M, et al. Isolation and characterization of novel chlorella vulgaris mutants with low chlorophyll and improved protein contents for food applications[J]. Frontiers in Bioengineering and Biotechnology, 2020,8:469-478.
[22]
肖仕圆,许敬亮,袁涛,等.富含碳水化合物微藻的筛选、鉴定及其在不同氮浓度条件下的产糖分析[J]. 新能源进展, 2015,3(5):340-345. Xiao S Y, Xu J L, Yuan T, et al. Screening and identification of carbohydrate-rich microalgae and carbohydrate production under different concentrations of nitrogen[J]. Advances in New and Renewable Energy, 2015,3(5):340-345.
[23]
王小英,冯剑,黄梦利,等.海南黎药海巴戟多糖含量测定及其测量不确定度评估[J]. 生物资源, 2018,40(4):345-352. Wang X Y, Feng J, Huang M L, et al. Polysaccharide content determination and measurement uncertainty evaluation of Morindae Citrifoliae Fructus[J]. Biotic Resources, 2018,40(4):345-352.
[24]
刘丽君,赵远,张恒峰,等.醋酸盐兼养培养下蛋白小球藻油脂积累的研究[J]. 中国环境科学, 2017,37(3):1111-1119. Liu L J, Zhao Y, Zhang H F, et al. Lipid accumulation of Chlorella pyrenoidosa under mixotrophic culture using sodium acetate[J]. China Environmental Science, 2017,37(3):1111-1119.
[25]
Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976,72(1/2):248-254.
[26]
Huang Y, Luo L, Xu K, et al. Characteristics of external carbon uptake by microalgae growth and associated effects on algal biomass composition[J]. Bioresource Technology, 2019,292:121887-121894.
[27]
Dahnum D, Tasum S O, Triwahyuni E, et al. Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch[J]. Energy Procedia, 2015,68:107-116.
[28]
Takahashi T. Routine management of microalgae using auto fluorescence from chlorophyll[J]. Molecules, 2019,24(24):4441-4456.
[29]
王垿,孙昕,李鹏飞,等.双对栅藻FACHB-78甘油三酯积累的盐胁迫条件优化[J]. 中国环境科学, 2019,39(12):5248-5253. Wang X, Sun X, Li P F, et al.Optimization of salt stress condition for accumulation of triglycerides in Scenedesmus bijuga FACHB-78[J]. China Environmental Science, 2019,39(12):5248-5253.
[30]
Vecchi V, Barera S, Bassi R, et al. Potential and Challenges of Improving Photosynthesis in Algae[J]. Plants, 2020,9(1):67-91.
[31]
Gupta P L, Choi H J, Pawar R R, et al. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source[J]. Journal of Environmental Management, 2016, 184(pt.3):585-595.
[32]
Vonlanthen S, Dauvillée D, Purton S. Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids[J]. Algal Research, 2015,12:109-118.
[33]
Ran W Y, Wang H T, Liu Y H, et al. Storage of starch and lipids in microalgae:Biosynthesis and manipulation by nutrients[J]. Bioresource Technology, 2019,291:121894-121905.
[34]
Pancha I, Chokshi K, George B, et al. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077[J]. Bioresource Technology, 2014,156:146-154.
[35]
Kube M, Jefferson B, Fan L, et al. The impact of wastewater characteristics, algal species selection and immobilisation on simultaneous nitrogen and phosphorus removal[J]. Algal Research, 2018,31:478-488.
[36]
Beuckels A, Smolders E, Muylaert K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment[J]. Water Research, 2015,77:98-106.