ZHOU Jia-min1,2, HUANG Ting-lin1,2, LIU Qian3, YANG Shang-ye1,2, KOU Li-qing1,2
1. Shannxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710000, China; 2. Key Laboratory of Northwest Water Resource, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710000, China; 3. Hanjiang-to-Weihe River Water Diversion Project Construction Co., Ltd., Xi'an 710010, China
Abstract:In order to reduce the nitrogen pollution load in micro-polluted reservoirs, a mixture of ferrite nitrate reduction bacteria was isolated from sediments of Lijiahe and Heihe reservoirs in Xi'an and named as Z13, which can remove nitrogen efficiently under low C/N conditions. Using nitrate nitrogen as the only nitrogen source and iron and acetic acid as the common electron donor, the metabolic characteristics of mixed bacteria Z13 with iron nitrate reduction on nitrogen, iron and organic matter were studied. The effects of different temperatures, initial pH, C/N, and Fe2+concentrations on the denitrification performance and ferrous oxidation of mixed bacteria Z13 were investigated. The results showed that under low C/N condition, the ferrous oxidizing nitrate-reducing mixed bacterial group Z13 had a nitrate nitrogen removal rate of 99.85%, a total nitrogen removal rate of 89.91%, a total removal rate of Fe2+ of 99.86%, and the oxidation rate was 82.70% at 78hours. And there was no accumulation of nitrite nitrogen and ammonia nitrogen. The single factor experiment showed that when the temperature was 30℃, pH 6.5,C/N 1.821, and the concentration of Fe2+ was 30mg/L, the reduction of mixed bacteria Z13 by ferrous nitrate had the best removal effect on ferrous oxidation and nitrogen. The mixed bacteria Z13 reduced by ferrous oxide nitrate had great application potential in the field of biological nitrogen removal in slightly polluted water.
Camargo J A, Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems:A global assessment[J]. Environ. Int., 2006,32(6):831-849.
[2]
张春华,黄廷林,方开凯,等.周村水库主库区热分层初期氮素降低的驱动因子分析[J]. 环境科学, 2016,37(11):4187-4193. Zhang C H, Huang T L, Fang K K, et al. Analysis of driving factors on the nitrogen decrease in the early stage of the thermal stratification in main area of Zhoucun Reservoir[J]. Environmental Science, 2016, 37(11):4187-4193.
[3]
黄廷林,刘婷婷,张海涵,等.水库贫营养好氧反硝化细菌分离及其对水体微生物群落影响[J]. 西安建筑科技大学学报(自然科学版), 2012,44(6):876-882. Huang T L, Liu T T, Zhang H H, et al. Isolation of oligotrophic aerobic denitrifying bacteria in reservoir and its effect on water microbial community[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2012,44(6):876-882.
[4]
黄传伟,于峰,谢勇军,等.饮用水生物反硝化脱氮的研究[J]. 水科学与工程技术, 2009,1(1):28-30. Huang C W, Yu F, Xie Y J, et al. The studies of biological denitrification of drinking water[J]. Water Science and Engineering Technology, 2009,1(1):28-30.
[5]
张萌.新型铁盐脱氮除磷技术的研究[D]. 杭州:浙江大学, 2015:4-7. Zhang M. Research on new technology of iron salt denitrification and phosphorus removal[D]. Hangzhou:Zhejiang university, 2015:4-7.
[6]
张理泰,杨长军,余丹,等.硫自养反硝化用于深度处理脱氮的研究与进展[J]. 云南化工, 2020,47(3):1-4,6. Zhang L T, Yang C J, Yu D, et al. Research and development of autotrophic denitrification for denitrification in deep treatment[J]. Yunnan Chemical Industry, 2020,47(3):1-4,6.
[7]
余静,周艳,颜椿,等.一株氢自养反硝化菌去除地下水硝酸盐的实验研究[J]. 工业水处理, 2018,38(10):29-33. Yu J, Zhou Y, Yan C, et al. Experimental research on the removal of nitrate from groundwater by a strain of hydrogen autotrophic denitrification bacterium[J]. Industrial Water Treatment, 2018,38(10):29-33.
[8]
陆彩霞,顾平.氢自养反硝化去除饮用水中硝酸盐的试验研究[J]. 环境科学, 2008,29(3):671-676. Lu C X, Gu P. Hydrogenotrophic denitrification for the removal of nitrate in drinking water[J]. Environmental Science, 2008,29(3):671-676.
[9]
杨含,郑丹,邓良伟,等.微生物驱动下铁氧化还原循环与生物脱氮[J]. 中国沼气, 2019,37(4):77-86. Yang H, Zheng D, Deng L W, et al. Iron recycle and biological nitrogen removal driven by microorganisms[J]. China Biogas, 2019,37(4):77-86.
[10]
Straub K L, Benz M, Schink B, et al. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron[J]. Applied and environmental microbiology, 1996,62(4):1458-1460.
[11]
Edwards K J, Rogers D R, Wirsen C O, et al. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha-and gamma-proteobacteria from the deep sea[J]. Appl. Environ. Microbiol., 2003,69(5):2906-2913.
[12]
Straub K L, Buchholz-Cleven B E. Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments[J]. Appl. Environ. Microbiol., 1998, 64(12):4846-4856.
[13]
Hauck S, Benz M, Brune A, et al. Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance)[J]. FEMS Microbiology Ecology, 2001,37(2):127-134.
[14]
张萌,郑平,季军远.厌氧铁氧化菌研究进展[J]. 应用生态学报, 2013,24(8):2377-2382. Zhang M, Zheng P, Ji J Y. Research progress of anaerobic ferric oxidizing bacteria[J]. Journal of Applied Ecology, 2013,24(8):2377-2382.
[15]
马智慧,王亚娥,李杰.铁氧化菌特性及其在环境污染治理中的应用[J]. 环境科学与管理, 2011,36(11):67-71. Ma Z H, Wang Y E, Li J. Properties of iron-oxidizing bacteria and its applications in environmental pollution control[J].Environmental science and management, 2011,36(11):67-71.
[16]
魏巍,黄廷林,苏俊峰,等. 1株贫营养好氧反硝化菌的分离鉴定及其脱氮特性[J]. 生态环境学报, 2010,19(9):2166-2171. Wei W, Huang T L, Su J F, et al. Isolation and identification of a strain of lean aerobic denitrifying bacteria andits denitrification characteristics[J]. Journal of Ecological Environment, 2010,19(9):2166-2171.
[17]
周石磊,黄廷林,白士远,等.贫营养好氧反硝化菌的分离鉴定及其脱氮特性[J]. 中国环境科学, 2016,(1):238-248. Zhou S L, Huang T L, Bai S Y, et al. Isolation, identification, and nitrogen removal characteristics of oligotrophic aerobic denitrifiers[J]. China Environmental Science, 2016,(1):238-248.
[18]
杨少斐.铁自养反硝化菌去除地下水硝酸盐和Fe2+的试验研究[D]. 西安:西安建筑科技大学, 2015:12-13. Yang S F. Experimental research about iron autotrophic denitrifying bacteria for the removal of nitrate and Fe2+ in groundwater[D]. Xi'an:Xi'an University of Architecture and Technology, 2015:12-13.
[19]
Throback I N, Enwall K, Jarvis A, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiol. Ecol., 2004, 49(3):401-417.
[20]
Su J F, Cheng C, Huang T L, et al. Characterization of coupling autotrophic denitrification with iron cycle bacterium Enterobacter sp. CC76 and its application of groundwater[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016,6(6):106-114.
[21]
国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002:200-415. The State Environmental Protection Administration. Standard methods for the examination of water and wastewater[M]. 4th Edition. Beijing:China Environmental Science Press, 2002:200-415.
[22]
杨世东,崔鑫鑫.好氧反硝化菌Acinetobacter sp.A2在主要环境影响条件下的NO3-去除动力学研究[J]. 东北电力大学学报, 2019,39(4):68-75. Yang S D, Cui X X. Kinetics of NO3- removal by aerobic denitrifying bacterium Acinetobacter sp. A2 under major environmental conditions.[J]. Journal of Northeast Dianli University, 2019,39(4):68-75.
[23]
狄霖,刘玲玲,钟志仁,等.水稻田铁氧化菌的丰度及微生物群落结构组成[J]. 江苏农业科学, 2019,47(10):296-300. Di L, Liu L L, Zhong Z R, et al. Abundance and microbial community composition of ferric oxide bacteria in rice paddy fields[J]. Jiangsu Agricultural Science, 2019,47(10):296-300.
[24]
Nevin K P, Lovley D R. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans [J]. Appl. Environ. Microbiol., 2002,68(5):2294-2299.
[25]
蒋云霞,黄廷林,杨尚业,等.水源水库贫营养好氧反硝化菌群脱氮特性研究[J]. 中国环境科学, 2020,40(6):2493-2502. Jiang Y X, Huang T L, Yang S Y, et al. Study on the denitrifying characteristics of oligotrophicaerobic denitrifying bacteria flora from source water reservoir[J]. China Environmental Science, 2020,40(6):2493-2502.
[26]
陈鹏程,李晓敏,李芳柏.水稻土Fe(Ⅱ)氧化耦合NO3--N还原的微生物变化[J]. 中国环境科学, 2017,37(1):358-366. Chen P C, Li X M, Li F B. Shifts of microbial communities during Fe(II) oxidation coupled to nitrate reduction in paddy soil[J]. China Environmental Science, 2017,37(1):358-366.
[27]
郭端强,刘海龙,万亚涛,等.一株好氧反硝化细菌的分离鉴定及反硝化特性研究[J]. 生物技术通报, 2012,(10):205-209. Guo D Q, Liu H L, et al. Isolation and identification of an aerobic denitrifier and its denitrifying characteristic[J]. Biotechnology Bulletin, 2012,(10):205-209.
[28]
康鹏亮,陈胜男,黄廷林,等.好/厌氧条件下反硝化细菌脱氮特性与功能基因[J]. 环境科学, 2018,39(8):3789-3796. Kang P L, Chen S N, Huang T L, et al. Denitrification characteristics and functional genes of denitrifying bacteria under aerobic or anaerobic conditions[J]. Environmental Science, 2018,39(8):3789-3796.
[29]
周志华,陈丽芳,李敏,等.铁氧化菌去除Fe2+条件的探究[J]. 福建师范大学学报(自然科学版), 2011,27(1):85-87. Zhou Z H, Chen L F, Li M, et al. Study on removal condition of Fe2+ by Ferric oxidizing Bacteria[J].Journal of Fujian Normal University (Natural Science Edition), 2011,27(1):85-87.
[30]
曾帅.低温热液沉淀物中Fe氧羟化物形成机制[J]. 科技创新与应用, 2013,2(23):52. Zeng S. Formation mechanism of Fe hydroxyl in low temperature hydrothermal sediments[J]. Scientific and Technological Innovation and Application, 2013,2(23):52.
[31]
Straub K L, Schönhuber W A, Buchholz-Cleven B E E, et al. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling[J]. Geomicrobiology Journal, 2004,21(6):371-378.
[32]
苏俊峰,杨少斐,黄廷林,等.低温贫营养好氧反硝化细菌SY13的反硝化特性[J]. 城市环境与城市生态, 2013,26(6):39-42. Su J F, Yang S F, Huang T L, et al. Aerobic denitrification of bacteria SY 13(Acinetobacter sp.) under low temperature and poor nutrition[J]. Urban Environment and urban Ecology, 2013,26(6):39-42.
[33]
Benz M, Brune A, Schink B. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria[J]. Arch. Microbiol., 1998,169(2):159-165.
[34]
Ehrenreich A, Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism[J]. Appl. Environ. Microbiol., 1994,60(12):4517-4526.
[35]
Straub K L, Rainey F A, Widdel F. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria[J]. Int. J. Syst. Bacteriol., 1999,492:729-735.
[36]
Robertson L A, Kuenen J G. Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium[J]. Microbiology (Society for General Microbiology), 1983, 129(9):2847-2855.
[37]
陶天申,杨瑞馥,东秀珠.原核生物系统学[M]. 北京:化学工业出版社, 2007:256-348. Tao Tian-shen, Yang Rui-fu, Dong Xiu-zhu. Systmatics prokaryotes[M]. Beijing:Chemical Industry Press, 2007:256-348.
[38]
Fan Y, Su J, Zheng Z, et al. Denitrification performance and mechanism of a novel isolated Acinetobacter sp. FYF8 in oligotrophic ecosystem[J]. Bioresource Technology, 2021,3(20):124-280.
[39]
Liu T, Chen D, Luo X, et al. Microbially mediated nitrate-reducing Fe(II) oxidation:Quantification of chemodenitrification and biological reactions[J]. Geochimica et Cosmochimica Acta, 2019,25(6):97-115.
[40]
陈丹丹.硝酸盐依赖亚铁氧化的生物和非生物过程研究[D]. 北京:中国科学院大学, 2016:43-67. Chen D D. Biological and abiotic processes of nitrate-dependent ferrous oxidation[D]. Beijing:University of Chinese Academy of Sciences, 2016:43-67.
[41]
谢小兰,余光伟,种云霄,等.污染河流底泥亚铁氧化硝酸盐还原菌分离及代谢特性[J]. 中国环境科学, 2015,35(5):1554-1562. Xie X L, Yu G W, Zhong Y X, et al. Isolation and characterization of metabolic activity of Fe(II)-oxidizing denitrifying bacteria from anaerobic river sediments[J]. China Environmental Science, 2015, 35(5):1554-1562.