Influence of coking coal ratio on emission characteristics of volatile organic compounds in sintering flue gas
LUO Yun-fei1, WANG Yi-fan1, LI Jun-jie3, YU Zheng-wei1, WEI Jin-chao3, LONG Hong-ming1,2
1. School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China; 2. Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling(Anhui University of Technology), 243002 Maanshan, PR China; 3. MCC Changtian International Engineering Co., Ltd., Changsha 410205, Hunan
Abstract:The PF-300 portable methane, total hydrocarbon, and non-methane total hydrocarbon tester was used to analyze the volatile organic compound content of the flue gas generated in the sintering cup experiment, and the effect of the sintering fuel coke-to-coal ratio on the emission characteristics of flue gas volatile organic compounds was studied.:Volatile organic compounds are continuously released during the sintering process, and their emission trends are consistent with NOx; the generation of TVOCs and MHC is significantly related to the volatile content of pulverized coal and coke powder. When pulverized coal is used as the main fuel, appropriate mixing Coke powder not only has a physical emission reduction effect on TVOCs and MHC, but also has the effect of coal coke mixing and synergistic emission reduction. At the same time, a domestic steel sintering machine was tested for TVOCs emission concentration and sub-sample composition, which showed that the volatile organic compound emission concentration in the flue gas of the steel sintering machine was higher, and the result was consistent with the curve obtained from the sintering cup experiment; the sintering process VOCs was tested separately. The main compounds are ethyl lactate, acetone, benzene, toluene, n-hexane and so on.
罗云飞, 王毅璠, 李俊杰, 余正伟, 魏进超, 龙红明. 焦煤比对烧结烟气中挥发性有机物排放特性的影响[J]. 中国环境科学, 2021, 41(9): 4077-4084.
LUO Yun-fei, WANG Yi-fan, LI Jun-jie, YU Zheng-wei, WEI Jin-chao, LONG Hong-ming. Influence of coking coal ratio on emission characteristics of volatile organic compounds in sintering flue gas. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(9): 4077-4084.
Yuan B, Hu W W, Shao M, et al. VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China[J]. Atmospheric Chemistry and Physics Discussions, 2013,13(3):6631-6679.
[2]
冯旸,刘锐源,刘雷璐,等.广州典型印刷企业VOCs排放特征及环境影响和健康风险评价[J]. 中国环境科学, 2020,40(9):3791-3800.Feng yang, Liu Rui-yuan, Liu Lei-lu, et al. VOCs emission characteristics, environmental impact and health risk assessment of typical printing enterprises in Guangzhou[J]. China Environmental Science, 2020,40(9):3791-3800.
[3]
王玉玲,宋敏,孟凡跃. CeO2-MnOx/CF对甲苯的催化氧化性能[J]. 中南大学学报(自然科学版), 2020,51(1):261-268.Wang Yuling, Song Min, Meng Fanyue. Catalytic performance of CeO2-MnOx/CF for oxidation of toluene[J]. Journal of Central South University (Science and Technology), 2020,51(1):261-268.
[4]
Zou Y, Deng X J, Zhu D, et al. Characteristics of l year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China[J]. Atmospheric Chemistry & Physics, 2015, 15(12):6625-6636.
[5]
王家德,金旦军,顾震宇,等.金属表面涂装行业VOCs排放特征及排放系数[J]. 中国环境科学, 2020,40(5):1940-1945.Wang Jia-de, Jin Dan-jun, Gu zhen-yu, et al. The VOCs emission characteristics of metal surface coating industryand its emission factors[J]. China Environmental Science, 2020,40(5):1940-1945.
[6]
王川,夏士勇,曹礼明,等.深圳西部城区大气O3污染特征及超标成因[J]. 中国环境科学, 2020,40(4):1414-1420.Wang C. Xia S X, Cao L M, et al. Study on the characteristics and the cause of atmospheric O; pollution in western urban of Shenzhen[J]. China Environmental Science, 2020.40(4):1414-1420.
[7]
张颖,孔少飞,郑煌,等.牛粪燃烧实时排放挥发性有机物特征研究[J]. 中国环境科学, 2020,40(5):1932-1939.Zhang Ying, Kong Shao-fei, Zheng Huang, et al. Real-time emission of volatile organic compounds from cow dung combustion[J]. China Environmental Science, 2020,40(5):1932-1939.
[8]
张瑞旭,刘焕武,邓顺熙,等.宝鸡市秋冬季大气VOCs浓度特征及其O3和SOA生成潜势[J]. 中国环境科学, 2020,40(3):983-996.Zhang R X, Liu H W, Deng S X, et al. Characteristics of VOCs and formation potential of O; and SOA in autumn and winter in Baoji. China[J]. China Environmental Science, 2020,40(3):983-996.
[9]
宁平,郭霞,田森林,等.昆明地区典型乔木主要挥发性有机物释放规律[J]. 中南大学学报(自然科学版), 2013,44(3):1290-1296.Ning Ping, Guo Xia, Tian Senlin, et al. Emission of main BVOCS for typical landscape trees in Kunming[J]. Journal of Central South University (Science and Technology), 2013,44(3):1290-1296.
[10]
李婷婷,梁小明,卢清,等.泡沫塑料鞋制造区VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 2020,40(8):3260-3267.Li Ting-ting, Liang Xiao-ming, LU Qing, et al. Pollution characteristics and ozone formation potential of VOCs in the plastic foam shoe manufacturing centre[J]. China Environmental Science, 2020,40(8):3260-3267.
[11]
Chen C H, Chuang Y C, Hsieh C C, et al. VOC characteristics and source apportionment at a PAMS site near an industrial complex in central Taiwan[J]. Atmospheric Pollution Research, 2019,10(4)1060-1074.
[12]
Huang Y S. Hsieh C C. Ambient volatile organic compound presence in the highly urbanized city:source apportionment and emission position[J]. Atmospheric Environment, 2019,206:45-59.
[13]
李璇,王雪松,刘中,等.宁波人为源VOC清单及重点工业行业贡献分析[J]. 环境科学, 2014,35(7):2497-2502.Li Xuan, Wang Xue-song, Liu Zhong, et al. Anthropogenic VOC emission inventory and contribution from industrial sources in Ningbo[J]. Environmental Science, 2014,35(7):2497-2502.
[14]
王超,赵彬,杨旭东.一种评价挥发性有机物污染水平的室内空气质量健康指数[J]. 中南大学学报(自然科学版), 2014,45(6):2099-2104.Wang Chao, Zhao Bin, Yang Xudong. Indoor air quality health index based on evaluation of volatile organic compounds pollution[J]. Journal of Central South University (Science and Technology), 2014,45(6):2099-2104.
[15]
Zhang X F, Yin Y Y, Wen J H, et al. Characteristics, reactivity andsource apportionment of ambient volatile organic compounds (VOCs) in a typical tourist city[J]. Atmospheric Environment, 2019,215:116898.
[16]
Yan Y L, Peng L, Li R M, et al. Concentration, ozone formationpotential and source analysis of volatile organic compounds (VOCs) ina thermal power station centralized area:A study in Shuozhou, China[J]. Environmental Pollution, 2017,223:295-304.
[17]
Cheng H R, Guo H, Saunders S M, et al. Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model[J]. Atmospheric Environment, 2010,44(34):4199-4208.
[18]
Environmental Affairs Division. Nippon steel and sumitomo metal sustainability report[R]. Japan:Nippon Steel and Sumitomo Metal Corporation, 2017.
[19]
Serge Roudier, Luis Delgado Sancho, Rainer Remus, et al. Best available techniques (BAT) reference document for iron and steel productionp[R].[S.l.]:Joint Research Centre JCR69967, 2012.
[20]
徐静颖,卓建坤,姚强.燃煤有机污染物生成排放特性与采样方法研究进展[J]. 化工学报, 2019,70(8):2823-2834.Xu Jingying, Zhuo Jiankun, Yao Qiang. Research progress on formation, emission characteristics and sampling methods of organic compounds from coal combustion[J]. CIESC Journal, 2019,70(8):2823-2834.
[21]
程杰.燃煤电厂挥发性有机污染物排放机理及脱除研究[D]. 北京:华北电力大学, 2019.CHENG Jie. Study on emission mechanism and removal of volatile organic pollutants from coal-fired power plants[D]. Beijing:North China Electric Power University, 2019.
[22]
范志威,周俊虎,谷月玲,等.顶空固相微萃取与色质联用研究煤中挥发性有机物[J]. 煤炭科学技术, 2004,32(10):0053-0055.An Zhi-wei, Zhou Jun-hu, Gu Yue-ling, et al. Research on volatile organic matter of coal with top solid phase micro-extraction and color-quality combination[J]. Coal Science and Technology, 2004, 32(10):0053-0055.
[23]
国家统计局.2019年国家统计年鉴[EB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E0H&sj=2019.National Bureau of Statistics. National statistical yearbook 2019[EB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E0H&sj=2019.
[24]
刘政,徐晨曦,陈军辉,等.典型钢铁企业挥发性有机物排放量测算及组分特征[J]. 中国环境科学, 2020,40(10):4292-4303.Liu Zheng, Xu Chen-xi, Chen Jun-hui, et al. Emission estimation and component characteristics of volatile organic compounds in typical iron and steel enterprise.[J]. China Environmental Science, 2020,40(10):4292-4303.
[25]
刘亚男,钟连红,闫静,等.民用燃料燃烧碳质组分及VOCs排放特征[J]. 中国环境科学, 2019,39(4):1412-1418.Liu Ya-nan, Zhong Lian-hong, Yan Jing, et al. Carbon compositions and VOCs emission characteristics of civil combustion fuels.[J]. China Environmental Science, 2020,40(10):4292-4303.
[26]
李国昊,魏巍,程水源,等.炼焦过程VOCs排放特征及臭氧生成潜势.北京工业大学学报, 2014,1(40):91-99.Li Guo-hao, Wei Wei, Cheng Shui-yuan, et al. Emission characterization and ozone formation potential of VOCs during the coking process[J]. Journal of Beijing University of Technology, 2014,1(40):91-99.
[27]
王海风,秦松,姜曦,等.钢铁工业烧结过程VOCs减排研究进展[J]. 钢铁, 2018,53(1):7-13.Wang Hai-feng, Qin Song, Jiang Xi, et al. Research development of VOCs emission reduction during iron ore sintering in steel industry[J]. Iron & Steel, 2018,53(1):7-13.
[28]
Li J, He X, Pei B, et al. The ignored emission of volatile organic compounds from iron ore sinter process[J]. Journal of Environmental Sciences, 2019,77:282-290.
[29]
苗沛然.钢铁工业挥发性有机物(VOCs)排放特性研究[J]. 环境与发展, 2017,(2):79-86.Miao Peiran. Research on VOCs emission characteristics in sintering process[J]. Environment and Development, 2017,(2):79-86.
[30]
Wang H F, Zhang C X, Qie J M, et al. Development trends of environmental protection technologies for Chinese steel industry[J]. Journal of Iron and Steel Research, International, 2017.