1. Beijing Capital Air Environmental Science & Technology Co., Ltd., Beijing 100176, China; 2. State Environmental Protection Key laboratory of Urban Ambient Air Particulate Matter Pollution and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
Abstract:As an important online source apportionment method, apportioning particle matter (PM) sources using single particle mass spectrometry (SPAMS) can't obtain the source contributions based on mass concentration. To solve this problem, a new online source apportionment method ArtPMF is proposed in this work. PM were collected and analyzed by SPAMS from February to March 2021 in an industrial city in Huaihe plain. The ArtPMF model was employed on the SPAMS dataset to quantify the source contributions to PM2.5. During the observational period, PM2.5 was contributed by secondary source, industrial source, vehicle exhaust source, coal combustion, crustal dust, biomass burning, and firework source, with contributions of 23%, 22%, 20%, 12%, 10%, 6%, and 6% respectively. The directional distributions of coal combustion, biomass burning, firework source, industrial source and vehicle exhaust source contribution are consistent with the actual situation of industrial enterprises and functional zoning, conforming that the ArtPMF can provide reliable source apportionment supporting for pollution control.
高健,李慧,史国良,等.颗粒物动态源解析方法综述与应用展望[J]. 科学通报, 2016,61(27):3002-3021. Gao J, Li H, Shi G L, et al. Overview of the development and application of multi-time resolution source apportionment for particulate matters[J]. Chinese Science Bulletin, 2016,61:3002-3021, doi:10.1360/N972016-00363.
[2]
刘佳媛,高健,张岳翀,等.北京APEC期间不同颗粒物源解析方法的结果比较[J]. 中国环境科学, 2020,40(3):938-947. Liu J Y, Gao J, Zhang Y C, el al. Results comparison of different source apportionment methods during APEC summit in Beijing[J]. China Environmental Science, 2020,40(3):938-947
[3]
Yang X, Xiao H, Wu Q, et al. Numerical study of air pollution over a typical basin topography:Source appointment of fine particulate matter during one severe haze in the megacity Xi'an[J]. Science of the Total Environment, 2020,708:135213.
[4]
Hao Y, Meng X, Yu X, et al. Quantification of primary and secondary sources to PM2.5 using an improved source regional apportionment method in an industrial city, China[J]. Science of the Total Environment, 2020,706:135715.
[5]
蔡靖,郑玫,闫才青,等.单颗粒气溶胶飞行时间质谱仪在细颗粒物研究中的应用和进展[J]. 分析化学, 2015,43(5):765-774. Cai J, Zheng M, Yan C J, et al. Application and progress of single particle aerosol time-of-flight mass spectrometer in fine particulate matter research[J]. Analytical Chemistry, 2015,43(5):765-774.
[6]
Chen Y, Liu H, Yang F, et al. Single particle characterization of summertime particles in Xi'an (China)[J]. Science of the Total Environment, 2018,636:1279-1290.
[7]
张军科,罗彬,张巍,等.成都市夏冬季大气胺颗粒物的单颗粒质谱研究[J]. 中国环境科学, 2019,39(8):3152-3160. Zhang J K, Luo B, Zhang W, et al. Single-particle characterization of amine-containing particles during summer and winter in Chengdu[J]. China Environmental Science, 2019,39(8):3152-3160.
[8]
于兴娜,时政,马佳,等.南京江北新区大气单颗粒来源解析及混合状态[J]. 环境科学, 2019,40(4):1521-1528. Yu X N, Shi Z, Ma J, et al. Source apportionment and mixing state of single particle in Nanjing Jiangbei new area[J]. Environmental Science, 2019,40(4):1521-1528.
[9]
Xu J, Wang H, Li X, et al. Refined source apportionment of coal combustion sources by using single particle mass spectrometry[J]. Science of the Total Environment, 2018,627:633-646.
[10]
Xu J, Tian Y, Cheng C, et al. Characteristics and source apportionment of ambient single particles in Tianjin, China:The close association between oxalic acid and biomass burning[J]. Atmospheric Research, 2020:104843.
[11]
Yang X, Xiao H, Wu Q, et al. Numerical study of air pollution over a typical basin topography:Source appointment of fine particulate matter during one severe haze in the megacity Xi'an[J]. Science of the Total Environment, 2020,708:135213.
[12]
刘慧琳,张达标,莫招育,等.南宁市一次污染过程大气颗粒物理化特性及来源[J]. 环境科学, 2017,38(11):4486-4493. Liu H L, Zhang D B, Mo Z Y, et al. Physicochemical property and sources of atmospheric particulate matter during a pollution process in Nanning[J]. Environmental Science, 2017,38(11):4486-4493.
[13]
Healy R M, Hellebust S, Kourtchev I, et al. Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements[J]. Atmospheric Chemistry & Physics, 2010,10(19):9593-9613.
[14]
McGuire M L, Jeong C H, Slowik J G, et al. Elucidating determinants of aerosol composition through particle-type-based receptor modeling[J]. Atmospheric Chemistry and Physics, 2011,11(15):8133-8155.
[15]
Giorio C, Tapparo A, Dall'Osto M, et al. Comparison of three techniques for analysis of data from an Aerosol Time-of-Flight Mass Spectrometer[J]. Atmospheric Environment, 2012,61(61):316-326.
[16]
Giorio C, Tapparo A, Dall'Osto M, et al. Local and regional components of aerosol in a heavily trafficked street canyon in central london derived from PMF and cluster analysis of single-particle ATOFMS spectra[J]. Environmental Science & Technology, 2015, 49(6):3330-3340.
[17]
Xu J, Li M, Shi G, et al. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer[J]. Science of the Total Environment, 2017,598:341.
[18]
Moffet R C, Prather K A. In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates[J]. Proceedings of the National Academy of Sciences, 2009,106(29):11872-11877.
[19]
Qin X, Pratt K A, Shields L G, et al. Seasonal comparisons of single-particle chemical mixing state in Riverside, CA[J]. Atmospheric Environment, 2012,59:587-596.
[20]
肖致美,徐虹,李鹏,等.京津冀区域重污染期间PM2.5垂直分布及输送[J]. 环境科学, 2019,40(10):4303-4309. Xiao Z M, Xu H, Li P, et al. Vertical distribution and transport of PM2.5 during heavy pollution events in the Jing-Jin-Ji Region[J]. Environmental Science, 2019,40(10):4303-4309.
[21]
Peng X, Liu X, Shi X, et al. Source apportionment using receptor model based on aerosol mass spectra and 1h resolution chemical dataset in Tianjin, China[J]. Atmospheric Environment, 2019,198:387-397.
[22]
Song X H, Hopke P K, Fergenson D P, et al. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A[J]. Analytical Chemistry, 1999,71:860-865.
[23]
Zhou Y, Huang X H H, Griffith S M, et al. A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer[J]. Atmospheric Environment, 2016,143:300-312.
[24]
Paatero P, Tapper U. Positive matrix factorization:a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994,5:111-126.
[25]
赵留元,李子璇,吕沛诚,等.基于SPAMS的兰州市2018年冬季沙尘天气过程细颗粒物污染特征及来源研究[J]. 环境科学学报, 2020,40(2):388-400. Zhao L Y, Li Z X, Lv P C, et al. Pollution characteristics and sources of atmospheric fine particulates during the period of 2018, winter dust weather in Lanzhou City based on SPAMS technology[J]. Acta Scientiae Circumstantiae, 2020,40(2):388-400.
[26]
黄子龙,曾立民,董华斌,等.利用SPAMS研究华北乡村站点(曲周)夏季大气单颗粒物老化与混合状态[J]. 环境科学, 2016,37(4):1188-1198. Huang Z L, Ceng L M, Dong H B, et al. Analysis of single particle aging and mixing state at an agriculture site (QuZhou) in the North China Plain in summer using a single particle aerosol mass spectrometer[J]. Environmental Science, 2016,37(4):1188-1198.
[27]
周静博,任毅斌,洪纲,等.利用spams研究石家庄市冬季连续灰霾天气的污染特征及成因[J]. 环境科学, 2015,36(11):3972-3980. Zhou J B, Ren Y B, Hong G, et al. Characteristics and formation mechanism of a multi-day haze in the winter of Shijiazhuang using a single particle aerosol mass spectrometer (SPAMS)[J]. Environmental Science, 2015,36(11):3972-3980.
[28]
曹力媛.基于SPAMS的太原市典型生活区停暖前后PM2.5来源及组成[J]. 山西大学学报, 2018,40(4):867-872. Cao L Y. Analysis on the pollution process of fine particulates in typical district of Taiyuan, Shanxi[J]. Journal of Shanxi University, 2018,40(4):867-872.
[29]
张琼玮,成春雷,李梅,等.两种典型污染时段鹤山市大气细颗粒污染特征及来源[J]. 环境科学研究, 2018,31(4):657-668. Zhang Q W, Cheng C L, Li M, et al. Chemical composition and source Apportionment of single Particles during two typical pollution events in Heshan City[J]. Research of Environmental Sciences, 2018,31(4):657-668.
[30]
樊泽薇,孔少飞,严沁,等.室内木柴燃烧排放水溶性离子粒径分布特征[J]. 中国环境科学, 2021,41(5):2064-2072. Fan Z W, Kong S F, Yan Q, et al. Size distribution of water-soluble ions in particles emitted from domestic firewood burning[J]. China Environmental Science, 2021,41(5):2064-2072.
[31]
Pratt K A, Murphy S M, Subramanian R, et al. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes[J]. Journal of the Physical Society of Japan, 2011,76(12):45-49.
[32]
谢瑞加,侯红霞,陈永山.烟花爆竹集中燃放的大气细颗粒物(PM2.5)成分图谱[J]. 环境科学, 2018,39(4):1484-1492. Xie R J, Hou H X, Chen Y S. Analysis on the composition of atmospheric fine particles (PM2.5) by the impacts of fireworks[J]. Environmental Science, 2018,39(4):1484-1492.
[33]
Gallavardin S, Lohmann U, Cziczo D. Analysis and differentiation of mineral dust by single particle laser mass spectrometry[J]. International Journal of Mass Spectrometry, 2008,274(1-3):56-63.
[34]
王海婷,温杰,徐娇,等.天津市城市扬尘及土壤尘单颗粒质谱特征[J]. 环境科学研究, 2018,31(5):844-852. Wang H T, Wen J, Xu J, et al. Characteristics of single urban raised dust and soil dust in Tianjin City[J]. Research of Environmental Sciences, 2018,31(5):844-852.
[35]
Chen X, Liu Q, Yuan C, et al. Emission characteristics of fine particulate matter from ultra-low emission power plants[J]. Environmental Pollution, 2019,255:113157.
[36]
杨柳,何晴,盛重义.燃煤电厂颗粒物中硫酸根与硝酸根离子的转化规律[J]. 环境科学, 2021,42(10):4678-4686. Yang L, He Q, Sheng Z Y. Conversion characterizations of sulfate ion and nitrate ion in particulate matters from coal-fired power plants[J]. 2021,42(10):4678-4686.
[37]
杨艳蓉,周雪明,秦娟娟,等.燃煤锅炉颗粒物化学组成排放特征[J]. 环境科学, 2019,40(9):3908-3915. Yang Y R, Zhou X M, Qin J J, et al. Emission characteristics of chemical composition of particulate matter from Coal-fired Boilers[J]. 2019,40(9):3908-3915.
[38]
Wang X, Williams B J, Wang X, et al. Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace[J]. Atmospheric Chemistry & Physics, 2013,13(21):10919-10932.
[39]
胡元洁.室内外大气颗粒物和典型有机污染物的环境行为及人体呼吸暴露风险[D]. 北京:中国科学院大学, 2018:1-2. Hu Y J. Environmental behavior and human inhalation exposure of particles and typical organic contaminants in indoor and outdoor air[D]. Beijing:University of Chinese Academy of Sciences, 2018:1-2.
[40]
徐娇,王海婷,马咸,等.利用单颗粒气溶胶质谱仪研究燃煤尘质谱特征[J]. 环境科学学报, 2019,39(1):25-34. Xu J, Wang H T, Ma X, et al. Study on mass spectral features of coal combustion emitted particles using single particle mass spectrometer[J]. Acta Scientiae Circumstantiae, 2019,39(1):25-34.
[41]
曹宁,黄学敏,祝颖,等.西安冬季重污染过程PM2.5理化特征及来源解析[J]. 中国环境科学, 2019,39(1):32-39. Cao N, Huang X M, Zhu Y, et al. Pollution characteristics and source apportionment of fine particles during a heavy pollution in winter in Xi'an City[J]. China Environmental Science, 2019,39(1):32-39.
[42]
杨燕萍,陈强,王莉娜,等.西北工业城市冬季PM2.5污染特征及理化性质[J]. 环境科学, 2020,41(12):5267-5275. Yang Y P, Chen Q, Wang L N, et al. Winter pollution characteristics and physicochemical properties of PM2.5 in a Northwest industrial city[J]. Environmental Science, 2020,41(12):5267-5275.
[43]
Sodeman D A, Toner S M, Prather K A. Determination of Single Particle Mass Spectral Signatures from Light-Duty Vehicle Emissions[J]. Environmental Science & Technology, 2005,39(12):4569-4580.
[44]
Gross D S, Galli M E, Silva P J, et al. Single Particle Characterization of Automobile and Diesel Truck Emissions in the Caldecott Tunnel[J]. Aerosol Science and Technology, 2000,32:152-163