The characterization of greenhouse gas emission from road traffic sources in Shenzhen
ZHANG Ming-di1, HE Dong-yi2, GU Tian-fa1, SUN Tian-le1, LIN Xiao-yu2, HUANG Xiao-feng2, HE Ling-yan2
1. Shenzhen Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China; 2. Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Abstract:In this study, three greenhouse gases (CO2, CH4, and N2O) and one conventional gas (CO) were observed at a roadside station in Shenzhen from September, 2019 to July, 2020. The average concentration of CO2, CH4, N2O, and CO was (430.8±6.1)x10-6, (2318.5±137.9)x10-9, (332.6±1.6)x10-9, and (333.4±121.2)x10-9, respectively. Seasonal variation of CO2 and CO were high in winter and low in summer, Seasonal variation of CH4 and N2O were high in autumn and low in summer. The high concentration in autumn and winter is due to the long-distance transmission of fossil fuel emissions during the heating period, and the low concentration in summer is mainly due to the reduction of long-distance transmission sources and the enhancement of sinks such as plant photosynthesis and photochemical reactions. The diurnal variation of CO2 concentration showed a two-peak and one-valley pattern, which was mainly affected by plant photosynthesis and morning and evening traffic peak; The diurnal variation of CO concentration showed a two-peak pattern, which was mainly affected by the morning and evening traffic peaks. The diurnal variation of CH4 andN2O concentration was high at night and low at day, which was mainly affected by daytime photochemical reaction. Among them, the concentration of CO2 and CO is more sensitive to the emission of traffic sources. In addition, this study compared the COVID-19 lockdown period in 2020 with the same period in 2021, and the results showed that the concentration of CO2, CH4, N2O, and CO decreased by 3.1%, 10.6%, 0.5% and 13.9%, respectively, indicating that traffic control can play an important role in reducing urban greenhouse gas emissions.
张明棣, 何冬一, 古添发, 孙天乐, 林晓玉, 黄晓锋, 何凌燕. 深圳市道路交通源温室气体排放特征分析[J]. 中国环境科学, 2022, 42(4): 1518-1525.
ZHANG Ming-di, HE Dong-yi, GU Tian-fa, SUN Tian-le, LIN Xiao-yu, HUANG Xiao-feng, HE Ling-yan. The characterization of greenhouse gas emission from road traffic sources in Shenzhen. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(4): 1518-1525.
Lashof D A, Ahuja D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990,344(6266):529-531.
[2]
WMO. The state of greenhouse gases in the atmosphere based on global observations through 2019[EB/OL]. https://gaw.kishou.go.jp/publications/bulletin, 2020-11-23.
[3]
Friedlingstein P, Jones M W, O'Sullivan M, et al. Global carbon budget 2019[J]. Earth System Science Data, 2019,11(4):1783-1838.
[4]
Le Quéré C, Andrew R M, Friedlingstein P, et al. Global carbon budget 2018[J]. Earth System Science Data, 2018,10(4):2141-2194.
[5]
Saunois M, Stavert A R, Poulter B, et al. The Global Methane Budget 2000-2017[J]. Earth System Science Data, 2020,12(3):1561-1623.
[6]
Kirschke S, Bousquet P, Ciais P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013,6(10):813- 823.
[7]
Tian H, Xu R, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020,586(7828):248-256.
[8]
Majumdar D, Chintada A, Sahu J, et al. Emissions of greenhouse and non-greenhouse air pollutants from fuel combustion in restaurant industry[J]. International Journal of Environmental Science and Technology, 2013,10(5):995-1006.
[9]
Majumdar D,Gajghate D G. Sectoral CO2, CH4, N2O and SO2 emissions from fossil fuel consumption in Nagpur City of Central India[J].Atmospheric Environment, 2011,45(25):4170-4179.
[10]
Murshed D. Estimating Greenhouse Gases from Roadway Transportation-Methodology Overview[C]. International Conference on Traffic & Transportation Studies, 2010.
[11]
刘立新,周凌晞,张晓春,等.我国4个国家级本底站大气CO2浓度变化特征[J]. 中国科学, 2009,(2):222-228. Liu L X, Zhou L X, Zhang C X, et al. CO2 concentrations at four national background sites in China[J]. Scientia Sinica, 2009,(2):222- 228.
[12]
浦静姣,徐宏辉,顾骏强,等.长江三角洲背景地区CO2浓度变化特征研究[J]. 中国环境科学, 2012,32(6):973-979. Pu J J, Xu H H, Gu J Q, et al. Study on the concenration variation of CO2 in the Background area of the Yangtze Delta[J]. China Environmental Science, 2012,32(6):973-979.
[13]
赵玉成,温玉璞,周晓春,等.青海瓦里关大气CO2本底浓度的变化特征[J]. 中国环境科学, 2006,26(1):1-5. Zhao Y C, Wen Y P, Zhou X C, et al. Change characteristics of atmospheric CO2 background concentration in Waliguan Qinghai[J]. China Environmental Science, 2006,26(1):1-5.
[14]
李燕丽,穆超,邓君俊,等.厦门秋季近郊近地面CO2浓度变化特征研究[J]. 环境科学, 2013,34(5):2018-2024. Li Y L, Mu C, Deng J J, et al. Near surface atmospheric CO2 variations in autumn at suburban Xiamen, China[J]. Environmental Science, 2013,34(5):2018-2024.
[15]
师丽魁,娄运生,方文松.郑州城区大气CO2浓度变化特征及影响因素分析[J]. 气象与环境科学, 2013,1(1):40-40. Shi L L, Lou Y S, Fang W S. Analysis of change characteristics and influence factor of atmospheric CO2 concentration in Zhengzhou urban area[J]. Meteorological and Environmental Science, 2013,1(1):40-40.
[16]
Kennedy C, Steinberger J, Gasson B, et al. Greenhouse gas emissions from global cities[J]. Environmental Science and Technology, 2009, 43(19):7297-7302.
[17]
深圳市统计局.深圳统计年鉴2020[M]. 北京:中国统计出版社, 2020. Statistics Bureau of Shenzhen Municipality. Shenzhen Statistical Yearbook 2020[M]. Beijing:China Statistics Press, 2020.
[18]
张林,靳孟贵,刘延锋,等.中国瓦里关和上甸子大气温室气体浓度变化特征[J]. 地球科学, 2021,46(8):15. Zhang L, Jin M M, Liu Y F, et al. Concentration variation characteristics of atmospheric greenhouse gases at Waliguan and Shangdianzi in China[J]. Earth Science, 2021,46(8):15.
[19]
中国气象局.2019年中国温室气体公报[R]. 2020. China Meteorological Administration. China Greenhouse Gas Bulletin in 2019[R]. 2020.
[20]
吕桅桅,刘敏,王凯.武汉市大气温室气体浓度变化特征分析[C]. 中国气象学会年会, 2015. Lu W W, Liu M, Wang K. Analysis on variation characteristics of atmospheric greenhouse gas concentration in Wuhan[C]. Annual Meeting of Chinese Meteorological Society, 2015.
[21]
刘鲁宁,王迎红,徐小娟,等.长沙市郊大气CH4浓度变化特征[J]. 环境科学, 2013,(11):4165-4170. Liu L N, Wang Y H, Xu X J, et al. Distribution of CH4 in the suburb of Changsha, China[J]. Environmental Science, 2013,(11):4165-4170.
[22]
孔少飞,陆炳,韩斌,等.天津近海大气中CH4, N2O和CO2季节变化分析[J]. 中国科学:地球科学, 2010,(5):666-676. Kong S F, Lu B, Han B, et al. Analysis of seasonal variations of CH4, N2O and CO2 in the coastal atmosphere of Tianjin[J]. Scientia Sinica:Earth Sciences, 2010,(5):666-676.
[23]
Zhou L, Conway T J, White JW C, et al. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan Observatory:Background features and possible drivers, 1991~2002[J].Global Biogeochemical Cycles, 2005,19(3).
[24]
夏玲君,周凌晞,刘立新,等.北京上甸子站大气CO2及δ13C(CO2)本底变化[J]. 环境科学, 2016,37(4):72-79. Xia L J, Zhou L X, Liu L X, et al. Monitoring atmospheric CO2 and δ13C(CO2) background levels at Shangdianzi station in Beijing, China[J]. Environmental Science, 2016,37(4):72-79.
[25]
Gioli B, Toscano P, Lugato E, et al. Methane and carbon dioxide fluxes and source partitioning in urban areas:The case study of Florence, Italy[J]. Environmental pollution, 2012,164:125-131.
[26]
Helfter C, Famulari D, Phillips G J, et al. Controls of carbon dioxide concentrations and fluxes above central London[J]. Atmospheric Chemistry and Physics, 2011,11(5):1913-1928.
[27]
Thompson A. The Oxidizing Capacity of the Earth's Atmosphere:Probable Past and Future Changes[J]. Science, 1992,256.
[28]
刘强,王跃思,王明星.北京地区大气主要温室气体的季节变化[J]. 地球科学进展, 2004,19(5):817-823. Liu Q, Wang Y S, Wang M X. Seasonal variational characteristics of atmospheric greenhouse gases in Beijng[J]. Advances In Earth Science, 2004,19(5):817-823.
[29]
王长科,王跃思,郑循华,等.北京城市大气N2O浓度及其变化[J]. 中国环境科学, 2003,23(5):557-560. Wang C K, Wang Y S, Zheng X H, et al. Concentration and its variations of atmospheric nitrous oxide in urban area of Beijing[J]. China Environmental Sciences, 2003,23(5):557-560.
[30]
Cicerone R J, Shetter J D, Stedman D H, et al. Atmospheric N2O Measurements to determine its sources, sinks, and variations[J]. Journal of Geophysical Research:Oceans, 1978,83(C6):3042-3050.
[31]
李晶,王跃思,刘强,等.北京市两种主要温室气体浓度的日变化[J]. 气候与环境研究, 2006,11(1):49-56. Li J, Wang Y S, Liu Q, et al. Diurnal variation of two greenhouse gases in Beijing[J]. Climatic and Environmental Research, 2006,11(1):49-56.
[32]
马德栗,鞠英芹,史瑞琴,等.天门市大气污染物特征及其与气象要素关系[J]. 环境科学与技术, 2020,43(S2):1-6. Ma D L, Ju Y Q, Shi R Q, et al. The characteristics of aatmospheric pollutants concentration and its relationship with meteorological factors in Tianmen City[J]. Environmental Science and Technology, 2020,43(S2):1-6.
[33]
谢雨竹,潘月鹏,倪长健,等.成都市区夏季大气污染物浓度时空变化特征分析[J]. 环境科学学报, 2015,(4):44-52. Xie Y Z, Pan Y P, Ni C J, et al. Temporal and spatial variations of atmospheric pollutants in urban Chengdu during summer[J]. Acta Scientiae Circumstantiae, 2015,(4):44-52.
[34]
陈阳,傅立新,郝吉明.城市光化学污染机理与规律研究进展[J]. 上海环境科学, 2000,19(4):167-170. Chen Y, Fu L X, Hao J M. Review on the mechanism and law of urban photochemical air pollution[J]. Shanghai Environmental Science, 2000,19(4):167-170.
[35]
Le Quéré C, Jackson R B, Jones M W, et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement[J]. Nature Climate Change, 2020,10(7):647-653.