1. State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; 2. China Meteorological Administration-Nankai University CMA-NKU) Cooperative Laboratory for Atmospheric Environment- Health Research, Tianjin 300374, China; 3. Taiyuan Ecological Environment Bureau, Taiyuan 030002, China; 4. Taiyuan Ecological Environment Publicity and Education Center, Taiyuan 030009, China
Abstract:Dustfall sampling and chemical composition analysis were carried out from November 2019 to December 2020 in Taiyuan, a typical industrial city. During the sampling period, the average amount of dust fall was 7.9t/km2·30d and was higher from April to June in Taiyuan. Among the 8selected monitoring areas, Qingxu and Julun had higher average amounts of dustfall, 10.7t/(km2·30d) and 10.6t/(km2·30d), respectively. Crustal elements (Ca, Si, and Al) accounted for a large proportion in the concentrations of dustfall, and the content of Fe in dustfall in Julun and Taoyuan monitoring areas was significantly higher than that in other monitoring areas. Datasets containing the amount of dustfall and its chemical composition were incorporated into two receptor models, respectively, positive matrix factorization (PMF) and partial target transformation-positive matrix factorization (PTT-PMF), to analyze the sources of dustfall in Taiyuan. By comparing the performance and source profiles of the two receptor models, it was found that the PTT-PMF receptor model which incorporated into the measured source profiles could better distinguish two similar sources (urban dust and construction dust) than the PMF model. According to the results from the two receptor models, dustfall in Taiyuan was mainly from six sources:urban dust (PMF:35%, PTT-PMF:35%), construction dust (PMF:29%, PTT-PMF:28%), steel industry (PMF:14%, PTT-PMF:14%), coal combustion (PMF:13%, PTT-PMF:12%), secondary inorganic compounds (PMF:5%, PTT-PMF:6%), vehicle emissions (PMF:4%, PTT-PMF:5%). The source contributions obtained by the two receptor models were similar, but the seasonal variations of the construction dust and steel industry were different. The contribution of coarse particles (urban dust and construction dust) to dustfall was greater than 60% (the main source in Taiyuan), and its contribution was higher in spring (from April to June).
Lawrence C R, Neff J C. The contemporary physical and chemical flux of aeolian dust:A synthesis of direct measurements of dust deposition[J]. Chemical Geology, 2009,267(1):46-63.
[2]
GB/T15265-94环境空气降尘的测定重量法[S].
[3]
陈莹,赵剑强,汤丹娜,等.西安市大气降尘重金属污染特征与生态风险[J].干旱区资源与环境, 2017,31(6):154-159.Chen Y, Zhao J Q, Tang D N, et al. Heavy metal pollution character-istics and ecological risk of dustfall in Xi'an city[J]. Journal of Arid Land Resources and Environment, 2017,31(6):154-159.
[4]
Wang X M, Cai D W, Li D F, et al. Dust deposition and its significance to soil nutrients in the Otindag Desert, China[J]. Journal of Arid Environments, 2021,194:104612.
[5]
Maher B A, Prospero J M, Mackie D, et al. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum[J]. Earth-Science Reviews, 2010,99(1):61-97.
[6]
钟萍,汪昂绿,张慧迪,等.武汉市高校大气降尘中水溶性离子污染特征及来源解析[J].环境工程, 2021,39(2):98-104.Zhong P, Wang A L, Zhang H D, et al. Characteristics and source analysis of water-soluble ion pollution in atmospheric dustfall in Wuhan universities[J]. Environmental Engineering, 2021,39(2):98-104.
[7]
霍婷婷,董发勤,刘孟清,等.不同粒段降尘重金属赋存与有机碳关联性分析[J].中国环境科学, 2020,40(1):52-62.Huo T T, Dong F Q, Liu M Q, et al. Correlation analysis between concentrations of heavy metal species and organic carbon in dustfall with different particle size[J]. China Environmental Science, 2020,40(1):52-62.
[8]
王丽丽,金囝囡,武志宏,等.不同类型施工降尘中重金属污染特征及健康风险评价[J].中国环境科学, 2021,41(3):1055-1065.Wang L L, Jin J N, Wu Z H, et al. Heavy metal pollution characteristics and associated health risk assessment in different types of construction dust[J]. China Environmental Science, 2021,41(3):1055-1065.
[9]
宋志辉,刘平,梁亚宇,等.太原市五年降尘及降水中主要离子特征[J].地球与环境, 2021,49(4):381-388.Song Z H, Liu P, Liang Y Y, et al. Characteristics of 5-year atmospheric dry deposition and annual variations of main ions in wet precipitation in Taiyuan city[J]. Earth And Environment, 2021, 49(4):381-388.
[10]
邱国良,陈泓霖.2010~2019年衡阳市大气降尘污染特征及变化趋势分析[J].干旱环境监测, 2020,34(2):54-58.Qiu G L, Chen H L. Analysis on the characteristics and trend of airborne pollution in Hengyang from 2010 to 2019[J]. Arid Environmental Monitoring, 2020,34(2):54-58.
[11]
方文稳,张丽,叶生霞,等.安庆市降尘重金属的污染评价与健康风险评价[J].中国环境科学, 2015,35(12):3795-3803.Fang W W, Zhang L, Ye S X, et al. Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Anqing[J]. China Environmental Science, 2015,35(12):3795-3803.
[12]
张兆永,吉力力·阿不都外力,姜逢清.艾比湖流域大气降尘重金属的污染和健康风险[J].中国环境科学, 2015,35(6):1645-1653.Zhang Z Y, Jilili·A, Jiang F Q. Pollution and potential health risk of heavy metals in deposited atmospheric dusts in Ebinur Basin, northwest China[J]. China Environmental Science, 2015,35(6):1645-1653.
[13]
李法松,韩铖,周葆华,等.安徽省室内降尘中多环芳烃分布及来源解析[J].中国环境科学, 2016,36(2):363-369.Li F S, Han C, Zhou B H, et al. Distribution and source analysis of polycyclic aromatic hydrocarbons in indoor dust from Anhui province, China[J]. China Environmental Science, 2016,36(2):363-369.
[14]
栾慧君,塞古,徐蕾,等.徐州北郊大气降尘重金属污染特征与风险评价[J].中国环境科学, 2020,40(11):4679-4687.Luan H J, Sékou M C, Xu L, et al. Characteristics and risk assessment of heavy metals from atmospheric deposition in northern suburban of Xuzhou[J]. China Environmental Science, 2020,40(11):4679-4687.
[15]
郑晓霞,赵文吉,郭逍宇.北京大气降尘中微量元素的空间变异[J].中国环境科学, 2015,35(8):2251-2260.Zheng X X, Zhao W J, Guo X Y. Spatial variation sofair borned usttr aceele mentsin Beijing[J]. China Environmental Science, 2015,35(8):2251-2260.
[16]
刘章现,王国贞,郭瑞,等.河南省平顶山市大气降尘的化学特征及其来源解析[J].环境化学, 2011,30(4):825-831.Liu Z X, Wang G Z, Guo R, et al. Char acteristic sand source analysis of element sindustfall in Pingdingshan city[J]. Environmental Chemistry, 2011,30(4):825-831.
[17]
代杰瑞,祝德成,庞绪贵,等.济宁市近地表大气降尘地球化学特征及污染来源解析[J].中国环境科学, 2014,34(1):40-48.Dai J R, Zhu D C, Pang X G, et al. Geochemical characteristics and pollution sources identification of the near-surface atmosphere dust-fall in Jiningcity[J]. China Environmental Science, 2014,34(1):40-48.
[18]
张斌.南京市大气降尘特征及源解析[D].南京:南京大学, 2013.Zhang B. Characteristics and source apportionment of atmospheric dustfall in Nanjing city[D]. Nanjing:Nanjing University, 2013.
[19]
Paatero P, Tapper U. Positive matrix factorization:A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994,5(2):111-126.
[20]
Paatero P. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1):23-35.
[21]
Gao J, Dong S H, Yu H F, et al. Source apportionment for online dataset at a megacity in China using a new PTT-PMF model[J]. Atmospheric Environment, 2020,229:117457.
[22]
Park M B, Lee T J, Lee E S, et al. Enhancing source identification of hourly PM2.5 data in Seoul based on a dataset segmentation scheme by positive matrix factorization (PMF)[J]. Atmospheric Pollution Research, 2019,10(4):1042-1059.
[23]
刘佳媛,高健,张岳翀,等.北京APEC期间不同颗粒物源解析方法的结果比较[J].中国环境科学, 2020,40(3):938-947.Liu J Y, Gao J, Zhang Y C, et al. Results comparison of different source apportionment methods during APEC summit in Beijing[J]. China Environmental Science, 2020,40(3):938-947.
[24]
邱晨晨,宫海星,于兴娜,等.南京江北新区PM2.5中水溶性离子的季节特征和来源解析[J].环境科学学报, 2021,41(5):1718-1726.Qiu C C, Gong H X, Yu X N, et al. Seasonal characteristics and source apportionment of water-soluble ions in PM2.5 of Nanjing Jiangbei New Area[J]. Acta Scientiae Circumstantiae, 2021,41(5):1718-1726.
[25]
王琴,张大伟,刘保献,等.基于PMF模型的北京市PM2.5来源的时空分布特征[J].中国环境科学, 2015,35(10):2917-2924.Wang Q, Zhang D W, Liu B X, et al. Spatial and temporal variations of ambient PM2.5 source contributions using positive matrix factorization[J]. China Environmental Science, 2015,35(10):2917-2924.
[26]
皇甫延琦,田瑛泽,董世豪,等.基于PMF模型的大气颗粒物多点位来源解析研究[J].中国环境科学, 2018,38(6):2032-2038.Huangfu Y Q, Tian Y Z, Dong S H, et al. Evaluating the performance of PMF model for atmospheric PM source apportionment in multi-site[J]. China Environmental Science, 2018,38(6):2032-2038.
[27]
王少博,王涵,张敬巧,等.邢台市秋季PM2.5及水溶性离子污染特征[J].中国环境科学, 2020,40(5):1877-1884.Wang S B, Wang H, Zhang J Q, et al. Characterization analysis of PM2.5 an dwater-soluble ions during autumnin Xingtai City. China Environmental Science, 2020,40(5):1877-1884.
[28]
肖致美,徐虹,李立伟,等.基于在线观测的天津市PM2.5污染特征及来源解析[J].环境科学, 2020,41(10):4355-4363.Xiao Z M, Xu H, Li L W, et al. Characterization and source apportionment of PM2.5 based on the online observation in Tianjin[J]. Environmental Science, 2020,41(10):4355-4363.
[29]
陈刚,刘佳媛,皇甫延琦,等.合肥城区PM10及PM2.5季节污染特征及来源解析[J].中国环境科学, 2016,36(7):1938-1946.Chen G, Liu J Y, Huangfu Y Q, et al. Seasonal variations and source apportionment of ambient PM10 and PM2.5 at urban area of Hefei, China[J]. China Environmental Science, 2016,36(7):1938-1946.
[30]
赵彩萍,周晋红,李瑞萍,等.太原春季沙尘天气特征分析[J].科技情报开发与经济, 2005,(4):187-189.Zhao C P, Zhou J H, Li R P, et al. Analysis on the features of the sand-dust weather in spring of Taiyuan[J]. Sci/Tech Information Development& Economy, 2005,(4):187-189.
[31]
汪旭颖,燕丽,雷宇,等.我国钢铁工业一次颗粒物排放量估算[J].环境科学学报, 2016,36(8):3033-3039.Wang X Y, Yan L, Lei Y, et al. Estimation of primary particulate emissions from iron and steel industry in China[J]. Acta Scientiae Circumstantiae, 2016,36(8):3033-3039.
[32]
倪登峰,刘素,曹力媛,等.太原市采暖季PM2.5组分特征及重污染事件分析[J].中国环境科学, 2020,40(7):2821-2828.Ni D F, Liu S, Cao L Y, et al. Composition characteristics of PM2.5 and heavy pollution events in Taiyuan city during heating season[J]. China Environmental Science, 2020,40(7):2821-2828.
[33]
刘素,马彤,杨艳,等.太原市冬季PM2.5化学组分特征与来源解析[J].环境科学, 2019,40(4):1537-1544.Liu S, Ma T, Yang Y, et al. Chemical composition characteristics and source apportionment of PM2.5 during winter in Taiyuan[J]. Environmental Science, 2019,40(4):1537-1544.