Abstract:Mathematical simulation technology (MST) has been widely applied in wastewater treatment, therefore, in order to systematically summarize these related technologies, this study reviewed the development of MST in sewage treatment system, and the application of activated sludge model (ASM) and machine learning (ML) in water quality prediction and parameter optimization; In addition, this paper mainly discussed the models of greenhouse gas emission in sewage treatment system, and the trade-off of multi-objective optimization model in sewage treatment system with the objectives of greenhouse gas emission (GHG), effluent quality (EQI) and operating cost (OCI). Furthermore, this paper also summarized the development of MST to achieve the energy self-sufficiency and resource recovery of sewage plant. The results from this study showed that MST can accurately predict the effluent quality, quickly optimize the process parameters, weigh the relationship among greenhouse gas emission, effluent quality and the operation cost, and improve the resource recovery efficiency. Overall, MST can effectively guide the operation optimization and management of sewage treatment process, and ultimately provide technical supports for the synergy of pollution reduction and carbon reduction in sewage treatment industry.
陈治池, 何强, 蔡然, 罗华瑞, 罗南, 宋忱馨, 程鸿. 碳中和趋势下数学模拟在污水处理系统中的发展与综合应用[J]. 中国环境科学, 2022, 42(6): 2587-2602.
CHEN Zhi-chi, HE Qiang, CAI Ran, LUO Hua-rui, LUO Nan, SONG Chen-xin, CHENG Hong. Development and comprehensive application of mathematical simulation in sewage treatment system under the trend of carbon neutralization. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(6): 2587-2602.
彭玉,王建辉,齐高相,等.活性污泥模型(ASMs)研究进展及其发展前景[J].应用化工, 2020,49(5):1288-1292.Peng Y, Wang J H, Qi G X, et al. Research progress and development prospect of activated sludge models (ASMs)[J]. Applied Chemical Industry, 2020,49(5):1288-1292.
[2]
Borzooei S, Campo G, Cerutti A, et al. Optimization of the wastewater treatment plant:From energy saving to environmental impact mitigation[J]. Science of The Total Environment, 2019,691:1182-1189.
[3]
Liu H, Zhang Y, Zhang H. Prediction of effluent quality in papermaking wastewater treatment processes using dynamic kernel-based extreme learning machine[J]. Process Biochemistry, 2020, 97:72-79.
[4]
Fernández-Arévalo T, Lizarralde I, Fdz-Polanco F, et al. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations[J]. Water Research, 2017, 118:272-288.
[5]
徐承志,操家顺,罗景阳,等.活性污泥数学模型在污水处理中的研究进展[J].应用化工, 2021,50(5):1341-1347.Xu C Z, Cao J S, Luo J Y, et al. Research progress of activated sludge mathematical model in sewage treatment[J]. Applied Chemical Industry, 2021,50(5):1341-1347
[6]
郭亚萍,陈士才,张宇坤,等.ASMs仿真软件在污水处理厂中的应用[J].中国给水排水, 2010,26(14):23-25.Guo Y P, Chen S C, Zhang Y K, et al. Application of ASMS simulation software in sewage treatment plant[J]. China Water& Wastewater, 2010,26(14):23-25
[7]
Huang R, Ma C, Ma J, et al. Machine learning in natural and engineered water systems[J]. Water Research, 2021,205:117666.
[8]
Sweetapple C, Fu G, Butler D. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Research, 2014,55:52-62.
[9]
Miao S, Zhou C, Alqahtani S A, et al. Applying machine learning in intelligent sewage treatment:A case study of chemical plant in sustainable cities[J]. Sustainable Cities and Society, 2021,72:103009.
[10]
Chen W, Dai H, Han T, et al. Mathematical modeling and modification of a cycle operating activated sludge process via the multi-objective optimization method[J]. Journal of Environmental Chemical Engineering, 2020,8(6):104470.
[11]
Torres C I, Marcus A K, Parameswaran P, et al. Kinetic experiments for evaluating the Nernst− Monod model for anode-respiring bacteria (ARB) in a biofilm anode[J]. Environmental Science&Technology, 2008,42(17):6593-6597.
[12]
Acuna-Askar K, Englande Jr A J, Hu C, et al. Methyl tertiary-butyl ether (MTBE) biodegradation in batch and continuous upflow fixed-biofilm reactors[J]. Water Science and Technology, 2000,42(5/6):153-161.
[13]
McKinney R E. Mathematics of complete-mixing activated sludge[J]. Journal of the Sanitary Engineering Division, 1962,88(3):87-113.
[14]
Lawrence A W, McCarty P L. Kinetics of methane fermentation in anaerobic treatment[J].\Water Pollution Control Federation, 1969:R1-R17.
[15]
Andrews J F. Dynamic models and control strategies for wastewater treatment processes[J]. Water Research, 1974,8(5):261-289.
[16]
James A. Investigations of sewage discharges to some British coastal waters. Chap. 8, Bacterial mortality, Pt. 3[J]. Marine Pollution Bulletin, 1987,18(6):299-299.
[17]
邵袁.基于WEST软件模拟的城市污水厂的优化运行研究[D].南京:东南大学, 2019.Shao Y. Research on optimal operation of urban sewage plant based on West software simulation[D]. Nanjing:Southeast University, 2019.
[18]
Dold P L, Marais G V R. Evaluation of the general activated sludge model proposed by the IAWPRC task group[J]. Water Science and Technology, 1986,18(6):63-89.
[19]
Henze M, Gujer W, Mino T, et al. Wastewater and biomass characterization for the activated sludge model no. 2:biological phosphorus removal[J]. Water Science and Technology, 1995,31(2):13-23.
[20]
Henze M, Gujer W, Mino T, et al. Activated sludge model No.2D, ASM2D[J]. Water Science and Technology, 1999,39(1):165-182.
[21]
Gujer W, Henze M, Mino T, et al. Activated sludge model No. 3[J]. Water Science and Technology, 1999,39(1):183-193.
[22]
Goel R, Mino T, Satoh H, et al. Comparison of hydrolytic enzyme systems in pure culture and activated sludge under different electron acceptor conditions[J]. Water Science and Technology, 1998,37(4/5):335-343.
[23]
Nasr M S, Moustafa M A, Seif H A, et al. Modelling and simulation of German BIOGEST/EL-AGAMY wastewater treatment plants-Egypt using GPS-X simulator[J]. Alexandria Engineering Journal, 2011,50(4):351-357.
[24]
Beaupré M, Rieger L, Vanrolleghem P A, et al. Implementation of a dynamic cost calculation module for Avedore WWTP using WEST[J]. Dept. of Industrial Electrical Engineering and Automation Lund University, Québec, 2008.
[25]
Lei L, Gharagozian A, Start B, et al. Process alternative comparisons assisted with biowin modeling[J]. Proceedings of the Water Environment Federation, 2006,(9):3274-3289.
[26]
Pedersen J. Controlling activated sludge process using EFOR[J]. Water Science and Technology, 1992,26(3/4):783-790.
[27]
袁良松,谢长焕,邓科.试论ASM水质特性参数测定方法[J].能源环境保护, 2007,(5):1-3.Yuan L S, Xie C H, Deng K. Discussion on the determination method of ASM water quality characteristic parameters[J]. Energy Environmental Protection, 2007,(5):1-3.
[28]
Dold P L, Marais G V R, Ekama G A. Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems[J]. Water Science& Technology, 1986,18(6):91.
[29]
Tschui M, Siegrist H. Interpretation of experimental data with regard to the Activated Sludge Model No. 1and calibration of the model for municipal wastewatertreatment plants[J]. Water Science& Technology, 1992,25(6):167.
[30]
Henze M. Characterization of wastewater for modelling of activated sludge processes[J]. Water Science& Technology, 1992,25(6):1.
[31]
Melcer H. Methods for wastewater characterization in activated sludge modelling:WERF Report (Project 99-WWF-3)[R]. Iwa Publishing, 2004.
[32]
郝二成,周军,等.活性污泥2号模型中进水COD组分确定方法研究[J].给水排水, 2008,34(4):32-36.Hao E C, Zhou J, et al. Study on determination method of influent cod composition in activated sludge model 2[J]. Water supply and drainage, 2008,34(4):32-36.
[33]
艾海男,张代均,何强,等.基于ASM_2的快速易生物降解COD组分表征方法构建[J].环境工程学报, 2011,5(9):2005-2008.Ai H N, Zhang D J, He Q, et al. Based on ASM_construction of rapid and easily biodegradable COD component characterization method[J]. Journal of environmental engineering, 2011,5(9):2005-2008.
[34]
Orhon D, okgr E U. COD fractionation in wastewater characterization-the state of the art[J]. J. Chem. Technol. Biotechnol., 1997,68(3):283-293.
[35]
池春榕,董姗燕,李齐佳,等.活性污泥数学模型研究进展[J].有色金属科学与工程, 2017,8(4):111-117.Chi C R, Dong S Y, Li Q J, et al. Research progress of activated sludge mathematical model[J]. Nonferrous MetalsScience and Engineering, 2017,8(4):111-117.
[36]
孙培德,王如意.全耦合活性污泥模型(FCASM3)Ⅰ:建模机理及数学表征[J].环境科学学报, 2008,(12):2404-2419.Sun P D, Wang R Y. Fully coupled activated sludge model (fcasm3)Ⅰ:modeling mechanism and mathematical characterization[J]. Acta Scientiae Circumstantiae, 2008,(12):2404-2419.
[37]
Kim H, Hao O J. SBR system for phosphorus removal:ASM2 and simplified linear Model[J]. Journal of Environmental Engineering, 2001.
[38]
Bahar S, Ciggin A S. A simple kinetic modeling approach for aerobic stabilization of real waste activated sludge[J]. Chemical Engineering Journal, 2016,303:194-201.
[39]
Ni B J, Yu H Q. An approach for modeling two-step denitrification in activated sludge systems[J]. Chemical Engineering Science, 2008, 63(6):1449-1459.
[40]
Man Z, Gong J, Yang C, et al. Simulation of the performance of aerobic granular sludge SBR using modified ASM3 model[J]. Bioresource Technology, 2012,127C:473-481.
[41]
Hebb D O. The Organization of behavior; A Neuropsychological Theory[J]. The American Journal of Psychology, 1950,63(4):633.
[42]
Mitchell T M. Machine Learning[M]. Machine Learning, 2003.
[43]
耿丽娟,李星毅.用于大数据分类的KNN算法研究[J].计算机应用研究, 2014,31(5):1342-1344.Geng L J, Li X Y. Research on KNN algorithm for big data classification[J] Application Research of Computer, 2014,31(5):1342-1344.
[44]
丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报, 2011,40(1):2-10.Ding S F, Qi B J, Tan H Y. Overview of support vector machine theory and algorithm[J] Journal of University of Electronic Science and Technology of China, 2011,40(1):2-10.
[45]
Shi T, Horvath S. Unsupervised learning with random forest predictors[J]. Journal of Computational and Graphical Statistics, 2006,15(1):118-138.
[46]
Clark J W. Neural network modeling[J]. Physics in Medicine& Biology, 1991,36(10):1259.
[47]
Adeli H, Karim A. Fuzzy-wavelet RBFNN model for freeway incident detection[J]. Journal of transportation Engineering, 2000,126(6):464-471.
[48]
Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
[49]
Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural networks, 2005,18(5/6):602-610.
[50]
Liu W, Wang Z, Liu X, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234:11-26.
[51]
卢宏涛,张秦川.深度卷积神经网络在计算机视觉中的应用研究综述[J].数据采集与处理, 2016,31(1):1-17.Lu H T, Zhang Q C. Review on the application of deep convolution neural network in computer vision[J] Journal of Data Acquisition& Processing, 2016,31(1):1-17.
[52]
Mowbray M, Savage T, Wu C, et al. Machine learning for biochemical engineering:A review[J]. Biochemical Engineering Journal, 2021,172:108054.
[53]
Zhong S, Zhang K, Bagheri M, et al. Machine Learning:New Ideas and Tools in Environmental Science and Engineering[J]. Environmental Science& Technology, 2021,55(19):12741-12754.
[54]
王丽萍,任宇,邱启仓,等.多目标进化算法性能评价指标研究综述[J].计算机学报, 2021,44(8):1590-1619.Wang L P, Ren Y, Qiu Q C, et al. Review on performance evaluation indexes of multi-objective evolutionary algorithms[J]. Journal of Computer Science, 2021,44(8):1590-1619.
[55]
Koopmans T C. An Analysis of Production as an efficient combination of activities[J]. Analysis of Production and Allocation, 1951.
[56]
Bhoskar M T, Kulkarni M O K, Kulkarni M N K, et al. Genetic Algorithm and its Applications to Mechanical Engineering:A Review[J]. Materials Today:Proceedings, 2015,2(4):2624-2630.
[57]
李红梅.多目标优化演化算法研究综述[J].现代计算机(专业版), 2009,(4):44-46.Li H M. Review of multi-objective optimization evolutionary algorithm[J]. Modern computer (Professional Edition), 2009,(4):44-46.
[58]
Schaffer J D. Some experiments in machine learning using vector evaluated genetic algorithms[Z]. Vanderbilt Univ., Nashville, TN (USA), 1985.
[59]
Zitzler E, Thiele L. Multiobjective evolutionary algorithms:a comparative case study and the strength Pareto approach[J]. IEEE transactions on Evolutionary Computation, 1999,3(4):257-271.
[60]
Srinivas N, Deb K, Roy P K, et al. Comparative study of vector evaluated GA and NSGA applied to multiobjective optimization, 1995[C]. 1995.
[61]
罗健旭,彭培培,徐颖,等.污水处理过程的多目标优化[J].西安交通大学学报, 2017,51(3):129-135.Luo J X, Peng P P, Xu Y, et al. Multi objective optimization of sewage treatment process[J]. Journal of Xi'an Jiaotong University, 2017, 51(3):129-135.
[62]
Zhang R, Xie W, Yu H, et al. Optimizing municipal wastewater treatment plants using an improved multi-objective optimization method[J]. Bioresource Technology, 2014,157:161-165.
[63]
李宸.基于多目标优化的污水厂升级改造综合评价和工艺比选[D].哈尔滨:哈尔滨工业大学, 2019.Li C. Comprehensive evaluation and process comparison of sewage plant upgrading based on multi-objective optimization[D]. Harbin:Harbin University of technology,2019.
[64]
Kim D, Bowen J D, Ozelkan E C. Optimization of wastewater treatment plant operation for greenhouse gas mitigation[J]. Journal of Environmental Management, 2015,163:39-48.
[65]
Nopens, Benedetti, Jeppsson, et al. Benchmark Simulation Model No 2:finalisation of plant layout and default control strategy RID E-1784-2011[J]. Water Science& Technology, 2010,2010,62(9)(-):1967-1974.
[66]
Chen K, Wang H, Valverde-Pérez B, et al. Optimal control towards sustainable wastewater treatment plants based on multi-agent reinforcement learning[J]. Chemosphere, 2021,279:130498.
[67]
Yang C, Zhang Y, Huang M, et al. Adaptive dynamic prediction of effluent quality in wastewater treatment processes using partial least squares embedded with relevance vector machine[J]. Journal of Cleaner Production, 2021,314:128076.
[68]
Cao J, Yang E, Xu C, et al. Model-based strategy for nitrogen removal enhancement in full-scale wastewater treatment plants by GPS-X integrated with response surface methodology[J]. Science of The Total Environment, 2021,769:144851.
[69]
Vitanza R, Colussi I, Cortesi A, et al. Implementing a respirometry-based model into BioWin software to simulate wastewater treatment plant operations[J]. Journal of Water Process Engineering, 2016,9:267-275.
[70]
Hu H, Liao K, Xie W, et al. Modeling the formation of microorganism-derived dissolved organic nitrogen (mDON) in the activated sludge system[J]. Water Research, 2020,174:115604.
[71]
Eldyasti A, Andalib M, Hafez H, et al. Comparative modeling of biological nutrient removal from landfill leachate using a circulating fluidized bed bioreactor (CFBBR)[J]. Journal of Hazardous Materials, 2011,187(1):140-149.
[72]
Dorofeev A, Nikolaev Y, Kozlov M, et al. Modeling of anammox process with the biowin software suite[J]. Applied Biochemistry& Microbiology, 2017,53(1):78-84.
[73]
Huang Z, Wu R, Yi X, et al. A novel model with GA evolving FWNN for effluent quality and biogas production forecast in a full-scale Anaerobic wastewater treatment process[J]. Complexity, 2019,2468189.
[74]
Corominas L, Garrido-Baserba M, Villez K, et al. Transforming data into knowledge for improved wastewater treatment operation:A critical review of techniques[J]. Environmental Modelling&Software, 2018,106:89-103.
[75]
Hamed M M, Khalafallah M G, Hassanien E A. Prediction of wastewater treatment plant performance using artificial neural networks[J]. Environmental Modelling& Software, 2004,19(10):919-928.
[76]
Seshan H, Goyal M K, Falk M W, et al. Support vector regression model of wastewater bioreactor performance using microbial community diversity indices:Effect of stress and bioaugmentation[J]. Water Research, 2014,53:282-296.
[77]
Perendeci A, Arslan S, Tanyolaç A, et al. Effects of phase vector and history extension on prediction power of adaptive-network based fuzzy inference system (ANFIS) model for a real scale anaerobic wastewater treatment plant operating under unsteady state[J]. Bioresource Technology, 2009,100(20):4579-4587.
[78]
Bagherzadeh F, Mehrani M, Basirifard M, et al. Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance[J]. Journal of Water Process Engineering, 2021,41:102033.
[79]
Alejo L, Atkinson J, Guzmán-Fierro V, et al. Effluent composition prediction of a two-stage anaerobic digestion process:Machine learning and stoichiometry techniques[J]. Environmental Science and Pollution Research, 2018,25(21):21149-21163.
[80]
Manu D S, Thalla A K. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater[J]. Applied Water Science, 2017,7(7):3783-3791.
[81]
Picos-Benítez A R, López-Hincapié J D, Chávez-Ramírez A U, et al. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment[J]. Water Science and Technology, 2017,75(6):1351-1361.
[82]
Jasim N A. The design for wastewater treatment plant (WWTP) with GPS X modeling[J]. Cogent Engineering, 2020,7(1):1723782.
[83]
魏忠庆,上官海东,叶均磊,等.基于GPS-X模拟的污水处理厂提标工艺优化[J].中国给水排水, 2018,34(19):81-84.Wei Z Q, Shangguan H D, Ye J Li, et al. Optimization of standard raising process of sewage treatment plant based on gps-x simulation[J]. China Water& Wastewater, 2018,34(19):81-84.
[84]
周振,胡大龙,吴志超,等.基于数学模型的多模式AAO系统运行优化研究[J].中国环境科学, 2014,34(7):1734-1739.Zhou Z, Hu D L, Wu Z C, et al. Research on operation optimization of multi-mode AAO system based on mathematical model[J]. China Environmental Science, 2014,34(7):1734-1739.
[85]
Elawwad A, Matta M, Abo-Zaid M, et al. Plant-wide modeling and optimization of a large-scale WWTP using BioWin's ASDM model[J]. Journal of Water Process Engineering, 2019,31:100819.
[86]
柳蒙蒙,陈梅雪,齐嵘,等.面向寒冷地区城镇污水处理厂提标改造的ASM模拟优化及其应用[J].环境工程学报, 2020,14(4):1119-1128.Liu M M, Chen M X, Qi R, et al. ASM simulation optimization and its application for upgrading and reconstruction of urban sewage treatment plants in cold areas[J]. Chinese Journal of Environmental Engineering, 2020,14(4):1119-1128.
[87]
Molinos-Senante M, Hanley N, Sala-Garrido R. Measuring the CO2 shadow price for wastewater treatment:a directional distance function approach[J]. Applied Energy, 2015,144:241-249.
[88]
Longo S, D Antoni B M, Bongards M, et al. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement[J]. Applied Energy, 2016,179:1251-1268.
[89]
Wang S, Zou L, Li H, et al. Full-scale membrane bioreactor process WWTPs in East Taihu basin:Wastewater characteristics, energy consumption and sustainability[J]. Science of The Total Environment, 2020,723:137983.
[90]
Bagherzadeh F, Nouri A S, Mehrani M, et al. Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach[J]. Process Safety and Environmental Protection, 2021,154:458-466.
[91]
郝二成,郭毅,刘伟岩,等.基于数学模拟的污水厂运行分析——建模与体检[J].中国给水排水, 2020,36(15):23-28.Hao E C, Guo Y, Liu W Y, et al. Operation analysis of sewage plant based on mathematical simulation——modeling and physical examination[J]. China Water& Wastewater, 2020,36(15):23-28.
[92]
郝二成,郭毅,刘伟岩,等.基于数学模拟的污水厂运行分析——控制与优化[J].中国给水排水, 2020,36(17):23-29.Hao E C, Guo Y, Liu W Y, et al. Operation analysis of sewage plant based on mathematical simulation-control and optimization[J]. China Water& Wastewater, 2020,36(17):23-29.
[93]
邵袁,王华成,覃榴滨,等.乡镇污水处理厂仿真模拟及优化运行研究[J].水处理技术, 2020,46(9):90-97.Shao Y, Wang H C, Qin L B, et al. Study on Simulation and optimal operation of township sewage treatment plants[J]. Technology of Water Treatment, 2020,46(9):90-97.
[94]
Wu X, Yang Y, Wu G, et al. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM)[J]. Journal of Environmental Management, 2016,165:235-242.
[95]
Rosso D, Stenstrom M K. Comparative economic analysis of the impacts of mean cell retention time and denitrification on aeration systems[J]. Water Research, 2005,39(16):3773-3780.
[96]
Water E F U. Energy conservation in water and wastewater facilities[M]. New York:WEF Press, 2009.
[97]
Olsson G. Water and energy:threats and opportunities[M]. London:IWA publishing, 2015.
[98]
Lizarralde I, Fernández-Arévalo T, Beltrán S, et al. Validation of a multi-phase plant-wide model for the description of the aeration process in a WWTP[J]. Water Research, 2018,129:305-318.
[99]
Asteriadis I, Azis K, Ntougias S, et al. A control strategy for an intermittently aerated and fed bioreactor to reduce aeration costs:A simulation study[J]. Biochemical Engineering Journal, 2021,173:108081.
[100]
Sean W, Chu Y, Mallu L L, et al. Energy consumption analysis in wastewater treatment plants using simulation and SCADA system:Case study in northern Taiwan[J]. Journal of Cleaner Production, 2020,276:124248.
[101]
Holenda B, Domokos E, Rédey A, et al. Aeration optimization of a wastewater treatment plant using genetic algorithm[J]. Optimal Control Applications and Methods, 2007,28(3):191-208.
[102]
Abbasi N, Ahmadi M, Naseri M. Quality and cost analysis of a wastewater treatment plant using GPS-X and CapdetWorks simulation programs[J]. Journal of Environmental Management, 2021,284:111993.
[103]
Rothausen S G, Conway D. Greenhouse-gas emissions from energy use in the water sector[J]. Nature Climate Change, 2011,1(4):210-219.
[104]
Edenhofer O. Climate change 2014:mitigation of climate change[M]. Cambridge University Press, 2015.
[105]
Protocol G R. Accurate, transparent, and consistent measurement of greenhouse gases across North America Version 1.1[Z]. May, 2008.
[106]
Ni B, Ye L, Law Y, et al. Mathematical modeling of nitrous oxide (N2O) emissions from full-scale wastewater treatment plants[J]. Environmental Science& Technology, 2013,47(14):7795-7803.
[107]
Boiocchi R, Gernaey K V, Sin G. A novel fuzzy-logic control strategy minimizing N2O emissions[J]. Water Research, 2017,123:479-494.
[108]
Huang F, Shen W, Zhang X, et al. Impacts of dissolved oxygen control on different greenhouse gas emission sources in wastewater treatment process[J]. Journal of Cleaner Production, 2020,274:123233.
[109]
Wang H, Yang Y, Keller A A, et al. Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa[J]. Applied Energy, 2016,184:873-881.
[110]
Bani Shahabadi M, Yerushalmi L, Haghighat F. Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants[J]. Water Research, 2009,43(10):2679-2687.
[111]
Carr M. Reducing greenhouse gas emissions industrial biotechnology and biorefining, 2007[C]. 2007.
[112]
Parravicini V, Svardal K, Krampe J. Greenhouse gas emissions from wastewater treatment plants[J]. Energy Procedia, 2016,97:246-253.
[113]
Fan Y, Bai Y, Jiao W. Estimation of GHG Emissions from Water Reclamation Plants in Beijing[J]. Water Environment Research, 2016,88(9):795-802.
[114]
de Haas D, Foley J, Barr K. Greenhouse gas inventories from WWTPs-the trade-off with nutrient removal[J]. Proceedings of the Water Environment Federation, 2008,2008(6):264-285.
[115]
Zhang Z, Wang B. Research on the life-cycle CO2 emission of China's construction sector[J]. Energy and Buildings, 2016,112:244-255.
[116]
Nep O, Iea I. The IPCC Guidelines for National Greenhouse Gas Inventories. IPCC[R]. 2006.
[117]
Mannina G, Ekama G, Caniani D, et al. Greenhouse gases from wastewater treatment-A review of modelling tools[J]. Science of The Total Environment, 2016,551-552:254-270.
[118]
Kyung D, Kim M, Chang J, et al. Estimation of greenhouse gas emissions from a hybrid wastewater treatment plant[J]. Journal of Cleaner Production, 2015,95:117-123.
[119]
Koutsou O P, Gatidou G, Stasinakis A S. Domestic wastewater management in Greece:Greenhouse gas emissions estimation at country scale[J]. Journal of Cleaner Production, 2018,188:851-859.
[120]
陈文亮,姚重华,吕锡武.活性污泥工艺的多目标优化分析[J].环境科学学报, 2013,33(7):1918-1925.Chen W L, Yao C H, Lv X W. Multi objective optimization analysis of activated sludge process[J]. Acta Scientiae Circumstantiae, 2013, 33(7):1918-1925.
[121]
周红标,乔俊飞.混合多目标骨干粒子群优化算法在污水处理过程优化控制中的应用[J].化工学报, 2017,68(9):3511-3521.Zhou H B, Qiao J F. Application of hybrid multi-objective backbone particle swarm optimization algorithm in optimal control of sewage treatment process[J]. CIESC Journal, 2017,68(9):3511-3521.
[122]
Flores-Alsina X, Arnell M, Amerlinck Y, et al. Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs[J]. Science of The Total Environment, 2014,466-467:616-624.
[123]
Sweetapple C, Fu G, Butler D. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Research, 2014,55:52-62.
[124]
付加锋,冯相昭,高庆先,等.城镇污水处理厂污染物去除协同控制温室气体核算方法与案例研究[J].环境科学研究, 2021, 34(9):2086-2093.Fu J F, Feng X Z, Gao Q X, et al. Accounting method and case study of greenhouse gas in collaborative control of pollutant removal in urban sewage treatment plant[J] Researchof Environmental Science, 2021,V.34;No.284(9):2086-2093.
[125]
Guo Q, Dai X. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste:Taking kitchen waste synergetic digestion project in Zhenjiang as an example[J]. Waste Management, 2017,69:360-364.
[126]
Diaz-Elsayed N, Rezaei N, Guo T, et al. Wastewater-based resource recovery technologies across scale:A review[J]. Resources, Conservation and Recycling, 2019,145:94-112.
[127]
Crawford G. Energy Efficiency in Wastewater treatment in North America:a compendium of best practices and case studies of novel approaches:WERF Report OWSO4R07e (WERF Report S)[M]. IWA Publishing, 2011.
[128]
Puchongkawarin C, Gomez-Mont C, Stuckey D C, et al. Optimization-based methodology for the development of wastewater facilities for energy and nutrient recovery[J]. Chemosphere, 2015, 140:150-158.
[129]
Manyuchi M M, Mbohwa C, Muzenda E. Anaerobic treatment of opaque beer wastewater with enhanced biogas recovery through Acti-zyme bio augmentation[J]. South African Journal of Chemical Engineering, 2018,26:74-79.
[130]
de Gracia M, Grau P, Huete E, et al. New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions:Model building and experimental verification[J]. Water Research, 2009,43(18):4626-4642.
[131]
Ruffino B, Cerutti A, Campo G, et al. Thermophilic vs. mesophilic anaerobic digestion of waste activated sludge:Modelling and energy balance for its applicability at a full scale WWTP[J]. Renewable Energy, 2020,156:235-248.
[132]
Sakiewicz P, Piotrowski K, Ober J, et al. Innovative artificial neural network approach for integrated biogas-wastewater treatment system modelling:Effect of plant operating parameters on process intensification[J]. Renewable and Sustainable Energy Reviews, 2020, 124:109784.
[133]
Shu L, Schneider P, Jegatheesan V, et al. An economic evaluation of phosphorus recovery as struvite from digester supernatant[J]. Bioresource Technology, 2006,97(17):2211-2216.
[134]
Fattah K P. Assessing struvite formation potential at wastewater treatment plants[J]. International Journal of Environmental Science and Development, 2012,3(6):548.
[135]
Kazadi Mbamba C, Flores-Alsina X, John Batstone D, et al. Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP[J]. Water Research, 2016,100:169-183.
[136]
Lizarralde I, Fernández-Arévalo T, Manas A, et al. Model-based opti mization of phosphorus management strategies in Sur WWTP, Madrid[J]. Water Research, 2019,153:39-52.