Catalytic performance of FeMn-based monolithic catalysts for toluene and chlorobenzene catalytic combustion
WANG Xiao-qiang1, YANG Ning2, XU Li2, LI Xiang-peng3, WANG Yu1,2
1. College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; 2. Novel Energy Materials & Catalysis Research Center, Shanwei Marine Industry Institute, Shanwei 516600, China; 3. Wuhan STHB Environmental Protection Technology Co., Ltd., Wuhan 430205, China
Abstract:This research compared a series of FeMn-based monolithic catalysts prepared by incipient impregnation, ultrasonicassisted impregnation and redox-precipitation. These catalysts were characterized by various techniques such as BET, SEM, XRD, H2-TPR and XPS. The results suggested that the redox-precipitation sample owned layered structure, which exposed larger specific surface area and more active site. In addition, the reduction temperature of the redox-precipitation sample was the lowest and Mn4+ content was the highest among the samples, which enhanced its catalytic performance. The redox-precipitation sample had the best catalytic performance for toluene and chlorobenzene combustion, its T50/T90 of toluene were 200℃ and 270℃, and the T50/T90 of chlorobenzene were 261℃ and 320℃, respectively. Meanwhile, its stability was also preferable than the other samples.
王小强, 杨宁, 徐力, 李相鹏, 王钰. 铁锰基整体式催化剂催化燃烧甲苯和氯苯性能[J]. 中国环境科学, 2022, 42(7): 3084-3092.
WANG Xiao-qiang, YANG Ning, XU Li, LI Xiang-peng, WANG Yu. Catalytic performance of FeMn-based monolithic catalysts for toluene and chlorobenzene catalytic combustion. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(7): 3084-3092.
宋梦迪,冯淼,李歆,等.成都市臭氧重污染成因与来源解析[J].中国环境科学, 2022,42(3):1057-1065. Song M D, F M, Li X, et al. Causes and sources of heavy ozone pollution in Chengdu[J]. China Environmental Science, 2022,42(3):1057-1065.
[2]
郑海胜,王晓琦,王瑞鹏,等.标准件行业VOCs排放特征及环境影响分析[J].中国环境科学, 2022,42(3):1048-1056. Zheng H S, Wang X Q, Wang R P, et al. VOCs emission characteristics and environmental impact analysis of fastener industry[J]. China Environmental Science, 2022,42(3):1048-1056.
[3]
席劲瑛,武俊良,胡洪营,等.工业VOCs排放源废气排放特征调查与分析[J].中国环境科学, 2010,30(11):1558-1562. Xi J Y, Wu J L, Hu H Y, et al. Investigation of industrial VOCs emission sources and analysis for their emitting characteristics[J]. China Environmental Science, 2010,30(11):1558-1562.
[4]
孙西勃,彭若斯,李淑君,等.Pt颗粒尺寸对Pt/CeO2催化氧化甲苯性能影响[J].环境科学学报, 2017,37(4):297-306. Su X B, Peng R S, Li S J, et al. Effect of Pt particle size on Pt/CeO2 catalyst for toluene catalytic oxidation[J]. Acta Scientiae Circumstantiae, 2017,37(4):297-306.
[5]
杨玉玲,周家斌,陈东,等.Pd/ZSM-5/堇青石整体式催化剂对甲苯的催化降解性能研究[J].现代化工, 2021,41(7):169-73. Yang Y L, Zhou J B, Chen D, et al. Study on catalytic performance of Pd/ZSM-5/cordierite monolithic catalyst for toluene degradation[J]. Modern Chemical Industry, 2021,41(7):169-73.
[6]
Wang Y, Chen Y, Zhang L, et al. Total catalytic oxidation of chlorinated aromatics over bimetallic Pt-Ru supported on hierarchical HZSM-5zeolite[J]. Microporous and Mesoporous Materials, 2020, 308:110538.
[7]
徐功达,司涵,黄琼,等.过渡金属改性的Cr-Ce-O催化剂氧化氯苯性能[J].中国环境科学, 2021,41(7):3184-3192. Xu G D, Si H, Huang Q, et al. Catalytic oxidation of chlorobenzene over Cr-Ce-O catalysts modified by transition metals[J]. China Environmental Science, 2021,41(7):3184-3192.
[8]
罗邯予,胡立扬,王恺莹,等.金属离子水热法掺杂δ-MnO2及其催化氧化氯苯性能[J].无机化学学报, 2019,35(3):413-421. Luo G Y, Hu L Y, Wang K Y, et al. Preparation by hydrothermal method and property of catalytic oxidation of gaseous chlorobenzene for metal ion doped MnO2[J]. Chinese Journal of Inorganic Chemistry, 2019,35(3):413-421.
[9]
Wang Y, Guo L M, Chen M, et al. CoMnxOy nanosheets with molecular-scale homogeneity:an excellent catalyst for toluene combustion[J]. Catalysis Science&Technology, 2018,8(2):459-471.
[10]
赵洪阳.钴锰和钴铜复合氧化物整体催化剂的制备及其催化氧化VOCs性能研究[D].大连:大连理工大学, 2021. Zhao H Y. Preparation of cobalt-manganese and cobalt-copper composite oxides monolithic catalysts and their performance for VOCs catalytic oxidation[D]. Dalian:Dalian University of Technology, 2021.
[11]
Wang Y, Wang G, Deng W, et al. Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion[J]. Chemical Engineering Journal, 2020,395:125172.
[12]
Chen J, Chen X, XU W J, et al. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chemical Engineering Journal, 2017,330:281-293.
[13]
易全瑞,赵培,刘善堂.FeOx对Mn-Ti复合氧化物催化剂催化燃烧氯苯性能的影响[J].功能材料, 2014,45(22):22041-22045,22050. Yi Q R, Zhao P, Liu S T, et al. Effect of FeOx on the performance of Mn-Ti complex oxide catalysts for the catalytic combustion of chlorobenzene[J]. Journal of Functional Materials, 2014,45(22):22041-22045,22050.
[14]
李振峰,季生福,赵福真,等.Fe-Mn/SiO2催化剂的制备及其催化甲苯燃烧性能[J].北京化工大学学报(自然科学版), 2010,37(2):1-5. Li Z F, Ji S F, Zhao F Z, et al. Preparation of Fe-Mn/SiO2catalysts and their performance in the catalytic combustion of toluene[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2010, 37(2):1-5.
[15]
Xia H, Zhang Z, Liu J, et al. Novel Fe-Mn-O nanosheets/wood carbon hybrid with tunable surface properties as a superior catalyst for Fenton-like oxidation[J]. Applied Catalysis B:Environmental, 2019, 259:118058.
[16]
Wang Y, Zhang L, Guo L M. Enhanced toluene combustion over highly homogeneous iron manganese oxide nanocatalysts[J]. ACS Applied Nano Materials, 2018,1(3):1066-1075.
[17]
司涵,黄琼,陶涛,等.La-M-Co-O/堇青石催化剂的制备及催化氧化氯苯[J].中国环境科学, 2020,40(10):4314-4322. Si H, Huang Q, Tao T, et al. Study on the preparation and catalytic oxidation of chlorobenzene over La-M-Co-O/cordierite catalysts[J]. China Environmental Science, 2020,40(10):4314-4322.
[18]
Wang G, Wang Y, Qin L B, et al. Efficient and stable degradation of chlorobenzene over a porous iron-manganese oxide supported ruthenium catalyst[J]. Catalysis Science&Technology, 2020,10(21):7203-7216.
[19]
Wang Y, Deng W, Wang Y F, et al. A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides[J]. Molecular Catalysis, 2018,459:61-70.
[20]
周媛媛,刘晗,邓琳,等.高稳定性Mn1-yNiyOx的制备及其高效催化燃烧甲苯的研究[J].中国环境科学, 2022,42(4):1601-1609. Zhou Y Y, Liu H, Deng L, et al. Preparation of Mn1-yNiyOx with high stability and study on its efficient catalytic combustion of toluene[J]. China Environmental Science, 2022,42(4):1601-1609.
[21]
Wang Y, Wu J, Wang G, et al. Oxygen vacancy engineering in Fe doped akhtenskite-type MnO2for low-temperature toluene oxidation[J]. Applied Catalysis B:Environmental, 2021,285:119873.
[22]
罗邯予.铈钛基催化剂上氯苯的催化燃烧性能研究[D].北京:北京化工大学, 2019. Luo G Y. Catalytic combustion performance of chlorobenzene over Ce-Ti-based complex metal oxides[D]. Beijing:Beijing University of Chemical Technology, 2019.
[23]
周俊丽.基于二氧化锰纳米片构建的功能性纳米材料与性能研究[D].广州:广东工业大学, 2015. Zhou J L. Functional nanomaterials based on manganese dioxide nanosheets and their properties[D]. Guangzhou:Guangdong University of Technology, 2015.
[24]
Carabineiro S A C, Bogdanchikova N, Tavares P B, et al. Nanostructured iron oxide catalysts with gold for the oxidation of carbon monoxide[J]. RSC Advances, 2012,2:2957-2965.
[25]
Feng S Y, Liu J D, Gao B. Synergistic mechanism of Cu-Mn-Ce oxides in mesoporous ceramic base catalyst for VOCs microwave catalytic combustion[J]. Chemical Engineering Journal, 2022,429(1):132302.
[26]
Guo X G, Jia J B, Dong H, et al. Hydrothermal synthesis of Fe-Mn bimetallic nanocatalysts as high-efficiency cathode catalysts for microbial fuel cells[J]. Journal of Power Sources, 2019,414:444-52.
[27]
Durán F G, Barbero B P, Cadús L E, et al. Manganese and iron oxides as combustion catalysts of volatile organic compounds[J]. Applied Catalysis B:Environmental, 2009,92(1/2):194-201.
[28]
Yang W H, Su Z A, Xu Z H, et al. Comparative study of α-, β-, γ-and δ-MnO2 on toluene oxidation:Oxygen vacancies and reaction intermediates[J]. Applied Catalysis B:Environmental, 2020,260:118150.
[29]
Zhang H Y, Sui S H, Zheng X M, et al. One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures[J]. Applied Catalysis B:Environmental, 2019,257:117878.
[30]
Liu L S, Song Y, Fu Z D, et al. Effect of preparation method on the surface characteristics and activity of the Pd/OMS-2catalysts for the oxidation of carbon monoxide, toluene, and ethyl acetate[J]. Applied Surface Science, 2017,396:599-608.
[31]
穆永瑞.Mn基催化剂的制备及其催化燃烧甲苯尾气性能研究[D].太原:中北大学, 2020. Mu Y R. Preparation of Mn-based catalyst and its catalytic performance in catalytic combustion of exhaust[D]. Taiyuan:North University of China, 2020.
[32]
李培,李经纬,刘善堂.La的掺杂方式对CeO2-MnOx催化氧化氯苯性能的影响[J].工业催化, 2013,21(3):23-6. Li P, LiJ W, Liu S T. Influence of different La doping methods on performance of CeO2-MnOx catalysts for chlorobenzene oxidation[J]. Industrial Catalysis, 2013,21(3):23-6.
[33]
刘芳彤.不同形貌的二氧化锰纳米材料的可控制备、优化及其低温催化氧化甲苯性能研究[D].南昌:江西农业大学, 2019. Liu F T. Controliable synthesis, optimization and study of low-temperature catalytic oxidation on toluene[D]. Nanchang:Jiangxi Agricultural University, 2019.
[34]
Ma X D, Wen J X, Guo H W, et al. Facile template fabrication of Fe-Mn mixed oxides with hollow microsphere structure for efficient and stable catalytic oxidation of 1,2-dichlorobenzene[J]. Chemical Engineering Journal, 2020,382:122940.
[35]
Sun P F, Wang W L, Dai X X, et al. Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions[J]. Applied Catalysis B:Environmental, 2016,198:389-97.
[36]
吴勐.Ce基催化剂上氯苯的低温催化燃烧研究[D].上海:华东理工大学, 2012. Wu M. The study on the Ce-based catalyst for low-temperature catalytic combustion of chlorobenzene[D]. Shanghai:East China University of Science and Technology, 2012.