Molecular simulation of NH4+ adsorption by kaolinite with different water content under temperature and pressure
YANG You-wei1,3, WANG You-lin2, LUO Yu-xia1, LIU Xin-qi1, GUO Chang-sheng3, CHEN Ming1, WANG Chun-ying1
1. Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Ganzhou 341000, China; 2. China South Rare Earth Group Co. LTD, Ganzhou 341000, China; 3. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract:In order to study the microscopic situation of NH4+ adsorption by kaolinite, kaolinite models with different hydration degrees of 4×2×1 were constructed after the convergence test of kaolinite monocytes by Material Studio software. The theoretical calculation and adsorption experiment of the model cell were carried out by using the methods of quantum mechanics and classical mechanics. The results showed that the stable structure model of kaolinite is obtained (error < 2%) under the conditions of exchange correlation functional GGA-PW91, K point 4×3×2 and truncation energy 600eV. The adsorption of NH4+ by kaolinite was obviously affected by temperature. With the increase of temperature, the adsorption capacity decreases gradually, which was consistent with the experimental results. The kinetic results showed that the adsorption type was mainly physical adsorption, and the adsorption forces were Van der Waals force and Coulomb force. The research results were helpful to supplement the research on the kaolinite properties and have a guiding role in the control of ammonia nitrogen pollution in soil of rare earth mines.
杨有威, 王有霖, 罗玉霞, 刘新棋, 郭昌胜, 陈明, 王春英. 温压条件下不同含水高岭石对NH4+吸附的分子模拟[J]. 中国环境科学, 2022, 42(8): 3720-3727.
YANG You-wei, WANG You-lin, LUO Yu-xia, LIU Xin-qi, GUO Chang-sheng, CHEN Ming, WANG Chun-ying. Molecular simulation of NH4+ adsorption by kaolinite with different water content under temperature and pressure. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(8): 3720-3727.
谢芳芳,王观石,罗嗣海,等.离子型稀土尾矿残留铵缓释性分析[J]. 中国环境科学, 2021,41(9):4333-4340. Xie F F, Wang G S, Luo S H, et al. Sustained release analysis of residual ammonium from ionic rare earth tailings[J]. Chinese Environmental Science, 2021,41(9):4333-4340.
[2]
Huang X W, Long Z Q, Wang L S, et al. Technology development for rare earth cleaner hydrometallurgy in China[J]. Rare Metals, 2015, 34(4):215-222.
[3]
Xiao Y F, Feng Z Y, Hu G H, et al. Leaching and mass transfer characteristics of elements from ion-adsorption type rare earth ore[J]. Rare Metals, 2015,34(5):357-365.
[4]
李琪,秦磊,王观石,等.离子吸附型稀土浸矿机制研究现状[J]. 中国稀土学报, 2021,39(4):543-554. Li Q, Qin L, Wang G S, et al. Research status of ion adsorption type rare earth leaching mechanism[J]. Chinese Journal of Rare Earth sciences, 2021,39(4):543-554.
[5]
赖城,周豪,张大超,等.重稀土元素钇对短程反硝化工艺的影响[J]. 中国环境科学, 2021,41(7):3221-3228. Lai C, Zhou H, Zhang D C, et al. Effect of heavy rare earth element yttrium on short-cut denitrification process[J]. Chinese Environmental Science, 2021,41(7):3221-3228.
[6]
王鹏,林雪玲,潘凤春,等.模拟计算压力对高岭石结构与力学性能的影响[J]. 硅酸盐学报, 2018,46(12):1788-1794. Wang P, Lin X L, Pan F C, et al. The influence of pressure on structure and mechanical properties of kaolinite was simulated[J]. Journal of silicates, 2018,46(12):1788-1794.
[7]
White C E, Provis J L, Riley D P, et al. What is the structure of kaolinite? Reconciling theory and experiment[J]. The Journal of Physical Chemistry B, 2009,113(19):6756-6765.
[8]
邓振乡,秦磊,王观石,等.离子型稀土矿山氨氮污染及其治理研究进展[J]. 稀土, 2019,40(2):120-129. Deng Z X, Qin L, Wang G S, et al. Research progress on ammonia nitrogen pollution and its treatment in ionic rare earth mines[J]. Rare earth, 2019,40(2):120-129.
[9]
牛广欣,张彬,康天和,等.孔隙压力和含水量对煤系高岭石吸附甲烷能量影响的分子模拟研究[J]. 采矿与安全工程学报, 2018,35(6):1269-1276. Niu G X, Zhang B, Kang T H, et al. Molecular simulation of the effect of pore pressure and water content on methane adsorption energy of kaolinite in coal measures[J]. Journal of Mining and Safety Engineering, 2018,35(6):1269-1276.
[10]
Ma Y, Lu G, Shao C, et al. Molecular dynamics simulation of hydrocarbon molecule adsorption on kaolinite (00 1) surface[J]. Fuel, 2019,237(2):989-1002.
[11]
Han Y, Liu W, Chen J. DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces[J]. Applied Surface Science, 2016,370(5):403-409.
[12]
Kong X P, Wang J. Copper (II) adsorption on the kaolinite (00 1) surface:Insights from first-principles calculations and molecular dynamics simulations[J]. Applied Surface Science, 2016,389(12):316-323.
[13]
左骁遥,房晓红,曾凡桂.二氧化碳在高岭石孔隙中吸附的分子模拟[J]. 矿产综合利用, 2020,41(1):163-167. Zuo X Y, Fang X H, Zeng F G. Molecular simulation of carbon dioxide adsorption in kaolinite pores[J]. Comprehensive utilization of mineral resources, 2020,41(1):163-167.
[14]
Niu J, Wang D, Wu A, et al. Molecular simulation study of argon adsorption on kaolinite surface with an experimental comparison[J]. Applied Surface Science, 2019,478(6):230-236.
[15]
Ma Y, Lu G, Shao C, et al. Molecular dynamics simulation of hydrocarbon molecule adsorption on kaolinite (00 1) surface[J]. Fuel, 2019,237(2):989-1002.
[16]
Bish D L. Rietveld refinement of the kaolinite structure at 1.5K[J]. Clays and clay minerals, 1993,41(6):738-744.
[17]
吕文婷,程运,谢浩,等.基于密度泛函理论的高岭石吸附机理研究进展[J]. 硅酸盐通报, 2020,39(1):157-168. Lv W T, Cheng Y, Xie H, et al. Research progress on adsorption mechanism of kaolinite based on density Functional Theory[J]. Silicate Bulletin, 2020,39(1):157-168.
[18]
陈军,闵凡飞,刘令云,等.不同胺/铵阳离子在高岭石(00 1)面吸附的密度泛函计算[J]. 煤炭学报, 2016,41(12):3115-3121. Chen J, Min F F, Liu L Y, et al. Different amine/ammonium cations in kaolinite (00 1) surface adsorption density functional calculations[J]. Journal of coal, 2016,41(12):3115-3121.
[19]
戴伟,水中和,沈春华,等.水分子在高岭土中吸附特性的蒙特卡罗模拟研究[J]. 硅酸盐学报, 2012,40(1):149-153. Dai W, Shui Z H, Shen C H, et al. Monte Carlo simulation of adsorption characteristics of water molecules in kaolin[J]. Journal of the Chinese Ceramic Society, 2012,40(1):149-153.
[20]
傅梁杰,刘天宇,杨华明.黏土矿物材料表界面功能设计的计算模拟[J]. 硅酸盐学报, 2021,49(7):1347-1358. Fu L J, Liu T Y, Yang H M. Computational simulation of interface functional design of clay mineral materials[J]. Journal of the Chinese Ceramic Society, 2021,49(7):1347-1358.
[21]
Santana E, Possa R D, Novais A L F, et al. Adsorption study of 4-nitrophenol onto kaolinite (001) surface:A van der Waals density functional study[J]. Materials Chemistry and Physics, 2021,271:124887.
[22]
Akkermans R L C, Spenley N A, Robertson S H. Monte carlo methods in materials studio[J]. Molecular Simulation, 2013,39(14/15):1153-1164.
[23]
张亚云,陈勉,邓亚,等.温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报, 2018,46(10):1489-1498. Zhang Y Y, Chen M, Deng Y, et al. Molecular dynamics simulation of montmorillonite hydration under temperature and pressure[J]. Journal of silicates, 2018,46(10):1489-1498.
[24]
Dubbeldam D, Torres-Knoop A, Walton K S. Monte Carlo codes, tools and algorithms[J]. Molecular Simulation, 2013,39(14/15):1253-1292.
[25]
Rand B, Melton I E. Particle interactions in aqueous kaolinite suspensions:I. Effect of pH and electrolyte upon the mode of particle interaction in homoionic sodium kaolinite suspensions[J]. Journal of Colloid and Interface Science, 1977,60(2):308-320.
[26]
张凯飞.煤层气排采过程中甲烷解吸与扩散过程的分子模拟研究[D]. 太原:中北大学, 2020. Zhang K F. Molecular simulation of methane desorption and diffusion during coalbed methane drainage[D]. Taiyuan:North University of China, 2020.
[27]
Guo F, Wang S, Feng Q, et al. Adsorption and absorption of supercritical methane within shale kerogen slit[J]. Journal of Molecular Liquids, 2020,320(11):43-64.
[28]
熊健,刘向君,梁利喜.甲烷在蒙脱石狭缝孔中吸附行为的分子模拟[J]. 石油学报, 2016,37(8):1021-1029. Xiong J, Liu X J, Liang L X. Molecular simulation of methane adsorption in montmorillonite slit pores[J]. Acta Petrolei Sinica, 2016,37(8):1021-1029.
[29]
HJ613-2011土壤干物质和水分的测定重量法[S]. HJ613-2011 Soil-Determination of dry matter and moisture-gravimetric method[S].
[30]
HJ 535-2009水质氨氮的测定纳氏试剂分光光度法[S]. HJ 535-2009 Determination of water quality and ammonia nitrogen by Spectrophotometry with Nahler's reagent[S].
[31]
杨飞,房晓红,曾凡桂,等.高岭石表面吸附铅和镉的模拟计算[J]. 矿产综合利用, 2020,41(5):196-202,100. Yang F, Fang X H, Zeng F G, et al. Simulation of Pb and Cd adsorption on kaolinite surface[J]. Multipurpose Utilization of Mineral Resources, 2020,41(5):196-202,100.
[32]
杨帅.离子型稀土矿开采过程中氨氮吸附解吸行为研究[D]. 北京:中国地质大学(北京), 2015. Yang S. Adsorption and desorption behavior of ammonia nitrogen in ionic rare earth ore mining[D]. Beijing:China University of Geosciences (Beijing), 2015.
[33]
宋晨曦,秦磊,胡世丽,等.离子型稀土尾矿除铵效果对比[J]. 环境工程学报, 2019,13(4):969-976. Song C X, Qin L, Hu S L, et al. Comparison of ammonium removal from ionic rare earth tailings[J]. Chinese Journal of Environmental Engineering, 2019,13(4):969-976.
[34]
郭为,熊伟,高树生,等.温度对页岩等温吸附/解吸特征影响[J]. 石油勘探与开发, 2013,40(4):481-485. Guo W, Xiong W, Gao S S, et al. Effect of temperature on isothermal adsorption/desorption characteristics of shale[J]. Petroleum Exploration and Development, 2013,40(4):481-485.
[35]
熊健,刘向君,梁利喜.甲烷在黏土矿物狭缝孔中吸附的分子模拟研究[J]. 煤炭学报, 2017,42(4):959-968. Xiong J, Liu X J, Liang L X. Molecular simulation study of methane adsorption in clay mineral slit pores[J]. Journal of China Coal Society, 2017,42(4):959-968.
[36]
傅献彩,沈文霞,姚天扬.物理化学(第四版)上册[M]. 北京:高等教育出版社, 1990. Fu X C, Shen W X, Yao T Y. Physical chemistry (4th Ed.) vol. I[M]. Beijing:Higher Education Press, 1990.
[37]
相建华,曾凡桂,梁虎珍,等.CH4/CO2/H2在煤分子结构中吸附的分子模拟[J]. 中国科学:地球科学, 2014,44(7):1418-1428. Xing J H, Zeng F G Liang H Z, et al. Molecular simulation of CH4/CO2/H2 adsorption in coal molecular structure. Science China Earth Sciences, 2014,44(7):1418-1428.
[38]
李晓媛,曹峰,岳高凡,等.柴达木盆地东部石炭系页岩吸附特性实验研究[J]. 地学前缘, 2016,23(5):95-102. Li X Y, Cao F, Yue G F, et al. Experimental study on adsorption characteristics of Carboniferous shales in eastern Qaidam Basin[J]. Earth Science Frontiers, 2016,23(5):95-102.
[39]
金肇岩,胡筱敏,孙通,等.脉冲电吸附技术深度脱氮及分子动力学模拟[J]. 中国环境科学, 2019,39(7):2871-2879. Jin Z Y, Hu X M, Sun T, et al. Deep nitrogen removal and molecular dynamics simulation by pulsed electroadsorption[J]. Chinese Environmental Science, 2019,39(7):2871-2879.
[40]
Allen M P, Tildesley D J. Computer simulation of liquids[M]. Oxford university press, 2017.
[41]
孙仁远,张云飞,范坤坤,等.页岩中黏土矿物吸附特性分子模拟[J]. 化工学报, 2015,66(6):2118-2122. Sun R Y, Zhang Y F, Fan K K, et al. Molecular simulation of adsorption characteristics of clay minerals in shale[J]. Ciesc Journal, 2015,66(6):2118-2122.
[42]
Zhao Y, Zhang B, Zhang X, et al. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions[J]. Journal of Hazardous Materials, 2010,178(1-3):658-664.
[43]
Mon E E, Hamamoto S, Kawamoto K, et al. Temperature effects on geotechnical properties of kaolin clay:simultaneous measurements of consolidation characteristics, shear stiffness, and permeability using a modified oedometer[J]. GSTF Journal of Geological Sciences, 2013, 1(1):1-10.
[44]
Huang S, Feng J, Yu J, et al. Adsorption and desorption performances of ammonium on the weathered crust elution-deposited rare earth ore[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021,613:126139.
[45]
李贞.高岭石表面上铵离子吸附的量子化学研究[J]. 有色金属科学与工程, 2017,8(4):36-41. Li Z. Quantum chemistry study of ammonium ion adsorption on kaolinite surface[J]. Nonferrous Metals Science and Engineering, 2017,8(4):36-41.