Effect of phosphate on monothiosarsenate adsorption to soil
ZHANG Jin-xian1, SHAN Hui-mei1, LIAO Dan-xue2, PENG San-xi3, DU Hai-ling1, LIU Yun-quan1, SHI Qian1
1. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Collaborative Innovation Center for Water Pollution Control and Water Security in Karst Areas, Guilin University of Technology, Guilin 541004, China; 2. College of Ecological and Environmental Protection, Guangxi Ecological Engineering Vocational and Technical College, Liuzhou 545003, China; 3. College of Earth Sciences, Guilin University of Technology, Guilin 541004, China
Abstract:In this study, batch experiments and characterization analysis were conducted to explore the characteristics and mechanism of MTA adsorption on soil by adding different concentrations of phosphate. Results showed that:the Elovich kinetic model and Langmuir isothermal adsorption model can better fit the adsorption process of MTA on soil, indicating that the adsorption process of MTA was mainly affected by the diffusion of pore size. The maximum adsorption capacity of MTA on soil was 254.214mg/kg. With the increase of the initial concentrations of adding phosphate in the solution, the equilibrium adsorption capacity of MTA on soil gradually decreases, and that of phosphate gradually increases. SEM-EDS results showed that a small amount of As was detected on the surface of soil whether adding phosphate or not. In the system with phosphate addition, the soil showed a relatively low content of As, confirming that the presence of phosphate can reduce the adsorption of MTA on soil. In addition, XRD results showed that MTA can form endosphere complexes of -[2Al(H2AsO4)3],≡Al2O2AsO(SH) and -[2Fe(H2AsO4)3] with Fe-Al minerals in soil samples, and phosphate can form endosphere complexes with hydroxyl groups on the surface of soil, weakening the adsorption of MTA.
段艳华,甘义群,郭欣欣,等.江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析[J]. 地质科技情报, 2014,33(2):140-147. Duan Y, Gan Y, Guo X, et al. Hydrogeochemistry and arsenic contamination of groundwater in the monitoring field, Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2014,33(2):140-147.
[2]
郭华明,郭琦,贾永锋,等.中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013,35(3):83-96. Guo H, Guo Q, Jiq Y, et al. Chemical characteristics and geochemical process of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 2013,35(3):83-96.
[3]
何薪,马腾,王焰新,等.内蒙古河套平原高砷地下水赋存环境特征[J]. 中国地质, 2010,37(3):781-788. He X, Ma T, Wang Y, et al. Geochemical characteristics of the As-bearing aquifer in the Hetao Plain,Inner Mongolia[J]. Geology in China, 2010,37(3):781-788.
[4]
张昌延,何江涛,张小文,等.珠江三角洲高砷地下水赋存环境特征及成因分析[J]. 环境科学, 2018,39(8):3631-3639. Zhang C, He J, Zhang X, et al. Geochemical characteristics and genesis analyses of high-arsenic groundwater in the Pearl River Delta[J]. Environmental Sience, 2018,39(8):3631-3639.
[5]
刘秋龙,杨昱,夏甫,等.地下水中阴离子对球磨零价铁除砷影响[J]. 中国环境科学, 2019,39(5):2028-2033. Liu Q, Yang Y, Xia F, et al. Impact of groundwater anions on the arsenic remove by milling zero valent iron[J]. China Environmental Science, 2019,39(5):2028-2033.
[6]
Sun S, Xie X, Li J, et al. Distribution and formation of thioarsenate in high arsenic groundwater from the Datong Basin, northern China[J]. Journal of Hydrology, 2020,590(2):125-268.
[7]
Xiao F, Wang S, Xu L, et al. Adsorption of monothioarsenate on amorphous aluminum hydroxide under anaerobic conditions[J]. Chemical Geology, 2015,407:46-53.
[8]
Wang Y, Lin J, Wang S, et al. Adsorption and transformation of thioarsenite at hematite/water interface under anaerobic condition in the presence of sulfide[J]. Chemosphere, 2019,222:422-430.
[9]
严克涛,郭清海.地下水环境中的硫代砷研究进展[J]. 水文地质工程地质, 2019,46(6):132-141. Yan K, Quo Q. Advances in thioarsenic in groundwater systems[J]. Hydrogeology & Engineering Geology, 2019,46(6):132-141.
[10]
O'reilly S, Strawn D, Sparks D. Residence time effects on arsenate adsorption/desorption mechanisms on goethite[J]. Soil Science Society of America Journal, 2001,65(1):67-77.
[11]
余倩,张宇,邬建勋,等.江汉平原沉积物中磷酸盐与砷的竞争吸附机制[J]. 中南民族大学学报(自然科学版), 2020,39(4):337-342. Yu Q, Zhang Y, Wu J, et al. Competitive adsorption mechanism of phosphate and arsenic in sediments from Jianghan Plain[J]. Journal of South-Sentral Minzu University (Natural Science Editon), 2020,39(4):337-342.
[12]
Hua J. Adsorption of low-concentration arsenic from water by co-modified bentonite with manganese oxides and poly (dimethyldiallylammonium chloride)[J]. Journal of Environmental Chemical Engineering, 2018,6(1):156-168.
[13]
Kubicki J, Kabengi N, Chrysochoou M, et al. Density functional theory modeling of chromate adsorption onto ferrihydrite nanoparticles[J]. Geochemical Transactions, 2018,19:12.
[14]
Lindegren M, Persson P. Competitive adsorption involving phosphate and benzenecarboxylic acids on goethite-Effects of molecular structures[J]. Journal of Colloid and Interface Science, 2010,343(1):263-270.
[15]
Besold J, Biswas A,Suess E, et al. Monothioarsenate transformation kinetics determining arsenic sequestration by sulfhydryl groups of peat[J]. Environmental Science & Technology, 2018,52(13):7317-7326.
[16]
Planer-Friedrich B, Schaller J, Wismeth F, et al. Monothioarsenate occurrence in bangladesh groundwater and its removal by ferrous and zero-valent iron technologies[J]. Environmental Science & Technology, 2018,52(10):5931-5939.
[17]
Suess E, Wallschlaeger D, Planer-Friedrich B. Stabilization of thioarsenates in iron-rich waters[J]. Chemosphere, 2011,83(11):1524-1531.
[18]
Planer-Friedrich B, London J, Mccleskey R, et al. Thioarsenates in geothermal waters of yellowstone national park:Determination, preservation, and geochemical importance[J]. Environmental Science & Technology, 2007,41(15):5245-5251.
[19]
Stauder S, Raue B, Sacher F. Thioarsenates in sulfidic waters[J]. Environmental Science & Technology, 2005,39(16):5933-5939.
[20]
Wang J, Halder D, Wegner L, et al. Redox dependence of thioarsenate occurrence in paddy soils and the rice rhizosphere[J]. Environmental Science & Technology, 2020,54(7):3940-3950.
[21]
Couture R, Rose J, Kumar N, et al. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides:A kinetic and spectroscopic investigation[J]. Environmental Science & Technology, 2013,47(11):5652-5659.
[22]
廖丹雪,单慧媚,张进贤,等.一硫代砷在针铁矿上的吸附及影响因素[J]. 环境科学, 2020,41(7):3337-3344. Liao D, Shan H, Zhang J, et al. Characteristics and influencing factors of monothioarsenate adsorption on goethite[J]. Environmental Sience, 环境科学, 2020,41(7):3337-3344.
[23]
李红梅,邓娅敏,罗莉威,等.江汉平原高砷含水层沉积物地球化学特征[J]. 地质科技情报, 2015,34(3):178-184. Li H, Deng Y, Luo L, et al. Geochemistry of high arsenic shallow aquifers sediment of the Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2015,34(3):178-184.
[24]
廖丹雪,单慧媚,彭三曦,等.一硫代砷酸盐在介质上的吸附特征及机制[J]. 环境科学, 2020,41(1):284-292. Liao D, Shan H, Peng S, et al. Characteristics and mechanism of monothioarsenate adsorption on sand, sediment and goethite[J]. Environmental Sience, 2020,41(1):284-292.
[25]
王敏黛,郭清海,郭伟,等.硫代砷化物的合成、鉴定和定量分析方法研究[J]. 分析化学, 2016,44(11):1715-1720. Wang M, Guo Q, Guo W, et al. Synthesis identification and quantitative analysis of aqueous thioarsenates[J]. Chinese Journal of Analytical Chemistry, 2016,44(11):1715-1720.
[26]
Shan H, Liao, D, Zhan, H, et al. Development of LC-HGAFS method for direct measurement of monothioarsenate and application for its adsorption characteristics[J]. Applied Geochemistry, 2020,122.
[27]
廖丹雪.一硫代砷酸盐的吸附特征及其影响因素的实验研究[D]. 桂林理工大学, 2020. Liao D. Experimental Study on Adsorption Characteristics and Influencing Factors of Arsenate Monothioarsenate.[D]. Guilin Unvironmental of Technology, 2020.
[28]
陈辉,单慧媚,彭三曦,等.不同水化学因素对砷在河砂上的吸附影响研究[J]. 环境科学学报, 2021,41(7):2727-2739. Chen H, Shan H, Peng S, et al. Hydrochemical Influences on Arsenic Adsorption by River Sand[J]. Acta Scientiae Circumstantiae, 2021, 41(7):2727-2739.
[29]
Dalal R. Desorption of soil phosphate by anion〆xchange resin[J]. Communications in Soil Science & Plant Analysis, 1974,5(6):531-538.
[30]
Hannon J, Kerry J, Cruz-Romero M, et al. Kinetic desorption models for the release of nanosilver from an experimental nanosilver coating on polystyrene food packaging[J]. Innovative Food Science & Emerging Technologies, 2017,44:149-158.
[31]
Low M.. Kinetics of Chemisorption of Gases on Solids[J]. Chemical Reviews, 1960,60(3):267-312.
[32]
Mckay Y. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999,34(5):451-465.
[33]
Weber W, Morris J. Kinetics of adsorption on carbon from solution[J]. Asce Sanitary Engineering Division Journal, 1963,1(2):1-2.
[34]
Shan H, Zhang J, Peng S, et al. Sorption of Monothioarsenate to the Natural Sediments and Its Competition with Arsenite and Arsenate[J]. International Journal of Environmental Research and Public Health, 2021,18(23):128-139.
[35]
吴昆明,郭华明,魏朝俊.改性磁铁矿对水体中砷的吸附特性研究[J]. 岩矿测试, 2017,36(6):624-632. Wu K, Guo H, Wei C. et al. Adsorption Characteristics of Arsenic in Water by Modified Magnetite[J]. Rock and Mineral Analysis, 2017, 36(6):624-632.
[36]
Jain A, Loeppert R. Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite[J]. Journal of Environmental Quality, 2000,29(5):1422-1430.
[37]
邹强,刘芳,杨剑虹.紫色土中砷、磷的吸附-解吸和竞争吸附[J]. 应用生态学报, 2009,20(6):1383-1389. Zou Q, Liu F, Yang J. Adsorption-desorption and Competitive of Arsenic and Phosphorus in Purple Soil[J]. Chinese Journal of Applied Ecology, 2009,20(6):1383-1389.
[38]
黄爽兵,Even E,王焰新.高砷含水层沉积物矿物学特征及砷的活化[J]. 矿物岩石, 2012,32(4):7-11. Huang S, Even E, Wang Y. Mineralogical Characteristics of Senmimenta and Arsenic Mobilization in the Aquifer,Jianghan Plain[J]. Mineralogy and Petrology, 2012,32(4):7-11.
[39]
Tiwari D, Lee, S M. Novel hybrid materials in the remediation of ground waters contaminated with As(III) and As(V)[J]. Chemical Engineering Journal, 2012,204:23-31.