Characteristics of background conditions and potential source areas of atmospheric perfluorinated greenhouse gases in the Yangtze River Delta
PU Jing-jiao1, XU Hong-hui1, YAO Bo2, ZHANG Chao3, SHAN Meng4
1. Zhejiang Meteorological Science Institute, Hangzhou 310008, China; 2. Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai 200438, China; 3. Quzhou Meteorological Bureau, Quzhou 324000, China; 4. Zhejiang Lin'an Atmospheric Background National Observation and Research Station, Hangzhou 311307, China
Abstract:The concentrations of perfluorinated greenhouse gases (PFCs, SF6, NF3 and SO2F2) were measured by means of canister sampling at Lin'an regional atmospheric background station, which was located in the Yangtze River Delta. The characteristics and long-term trends of the concentrations of these perfluorinated greenhouse gases from 2011 to 2020 were analyzed. The results showed that the concentrations of most perfluorinated greenhouse gases at Lin'an station had been increasing year by year. At 2020, the background concentrations of perfluorinated greenhouse gases in the Yangtze River Delta had reached the level of (86.30±0.52)×10-12 (CF4), (5.03±0.00)×10-12 (C2F6), (0.70±0.01)×10-12 (C3F8), (1.82±0.00)×10-12 (c-C4F8), (10.44±0.01)×10-12 (SF6), (2.36±0.04)×10-12 (NF3), (2.61±0.05)×10-12 (SO2F2), respectively, which were in consistent with the global background levels. Both Potential Source Contribution Function (PSCF) and Concentration-weighted Trajectory (CWT) methods were applied to reveal the potential source areas of perfluorinated greenhouse gases at Lin'an station. The results indicated that the potential source areas of PFCs (including CF4, C4F10, C2F6, C3F8and c-C4F8) mainly covered the provinces of Shandong, Jiangsu, Anhui, Shanghai, Northern and Central Zhejiang and Northeast Jiangxi, while the potential source areas of NF3, SF6 and SO2F2 were concentrated in Central and Southern Jiangsu, Shanghai and Northern Zhejiang.
浦静姣, 徐宏辉, 姚波, 张超, 单萌. 长三角地区全氟温室气体本底特征及来源[J]. 中国环境科学, 2022, 42(10): 4494-4500.
PU Jing-jiao, XU Hong-hui, YAO Bo, ZHANG Chao, SHAN Meng. Characteristics of background conditions and potential source areas of atmospheric perfluorinated greenhouse gases in the Yangtze River Delta. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(10): 4494-4500.
WMO.Scientific assessment of ozone depletion:2018[EB/OL].https://library.wmo.int/doc_num.php?explnum_id=5704.
[2]
Yokouchi Y, Inagaki T, Yazawa K, et al.Estimates of ratios of anthropogenic halocarbon emissions from Japan based on aircraft monitoring over Sagami Bay, Japan[J].Journal of Geophysical Research, 2005,110,D06301,doi:10.1029/2004JD005320.
[3]
Hurst D, Lin J, Romashkin P, et al.Continuing global significance of emissions of Montreal Protocol-restricted halocarbons in the United States and Canada[J].Journal of Geophysical Research, 2006,111, D15302,doi:10.1029/2005JD006785.
[4]
Robson J, Gohar L, Hurley M, et al.Revised IR spectrum, radiative efficiency and global warming potential of nitrogen trifluoride[J].Geophysical Research Letters, 2006,33,L10817,doi:10.1029/2006GL026210.
[5]
Weiss R, Mühle J, Salameh P, et al.Nitrogen trifluoride in the global atmosphere[J].Geophysical Research Letters, 2008,35,L20821,doi:10.1029/2008GL035913.
[6]
Mühle J, Huang J, Weiss R, et al.Sulfuryl fluoride in the global atmosphere[J].Journal of Geophysical Research, 2009,114:D05306, doi:10.1029/2008JD011162.
[7]
Mühle J, Ganesan A, Miller B, et al.Perfluorocarbons in the global atmosphere:tetrafluoromethane, hexafluoroethane, and octafluoropropane[J].Atmospheric Chemistry and Physics, 2010,10:5145-5164.
[8]
Rigby M, Mühle J, Miller B, et al.History of atmospheric SF6 from 1973 to 2008[J].Atmospheric Chemistry and Physics, 2010,10:10305-10320.
[9]
Ivy D, Arnold T, Harth C, et al.Atmospheric histories and growth trends of C4F10, C5F12, C6F14, C7F16 and C8F18[J].Atmospheric Chemistry and Physics, 2012,12:4313-4325.
[10]
Ivy D, Rigby M, Baasandorj M, et al.Global emission estimates and radiative impact of C4F10, C5F12, C6F14, C7F16 and C8F18[J].Atmospheric Chemistry and Physics, 2012,12:7635-7645.
[11]
Papadimitriou V, McGillen M, Fleming E, et al.NF3:UV absorption spectrum temperature dependence and the atmospheric and climate forcing implications[J].Geophysical Research Letters, 2013,40:440-445.
[12]
Totterdill A, Kovács T, Feng W, et al.Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)[J].Atmospheric Chemistry and Physics, 2016,16:11451-11463.
[13]
Trudinger C, Fraser P, Etheridge D, et al.Atmospheric abundance and global emissions of perfluorocarbons CF4, C2F6 and C3F8 since 1800 inferred from ice core, firn, air archive and in situ measurements[J].Atmospheric Chemistry and Physics, 2016,16:11733-11754.
[14]
Brunner D, Arnold T, Henne S, et al.Comparison of four inverse modelling systems applied to the estimation of HFC-125, HFC-134a, and SF6 emissions over Europe[J].Atmospheric Chemistry and Physics, 2017,17:10651-10674.
[15]
Pallav P, Lena H.Global emissions of fluorinated greenhouse gases 2005-2050 with abatement potentials and costs[J].Atmospheric Chemistry and Physics, 2017,17:2795-2816.
[16]
Arnold T, Manning A, Kim J, et al.Inverse modelling of CF4 and NF3 emissions in East Asia[J].Atmospheric Chemistry and Physics, 2018, 18:13305-13320.
[17]
Rolfe T, Rice A.Trends in N2O and SF6 mole fractions in archived air samples from Cape Meares, Oregon (USA), 1978~1996[J].Atmospheric Chemistry and Physics, 2019,19:8967-8977.
[18]
Droste E, Adcock K, Ashfold M, et al.Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere[J].Atmospheric Chemistry and Physics, 2020,20:4787-4807.
[19]
谢文琪,姚波,权维俊,等.北京上甸子大气本底站氢氟碳化物在线观测研究[J].中国环境科学, 2019,39(12):4941-4949.Xie W, Yao B, Quan W, et al.The in-situ measurement of atmospheric hydrofluorocarbons (HFCs) at the Shangdianzi Regional Background Station in Beijing[J].China Environmental Science, 2019,39(12):4941-4949.
[20]
孙扬,王跃思,刘广仁.改进GC/ECD法连续测定大气中的CFCs[J].环境污染治理技术与设备, 2004,5(8):88-93.SunY, Wang Y, Liu G.An improved gas chromatography system for continuous measurement of atmospheric CFCs[J].Techniques and Equipment for Environmental Pollution Control, 2004,5(8):88-93.
[21]
修天阳,王跃思,孙扬,等.北京大气中CFC-11的浓度观测与变化趋势[J].环境科学, 2005,26(1):1-6.Xiu T, Wang Y, Sun Y, et al.Trends and variation of CFC-11in the atmosphere of Beijing[J].Environmental Science, 2005,26(1):1-6.
[22]
Qin D.Decline in the concentrations of chlorofluorocarbons (CFC-11, CFC-12 and CFC-113) in an urban area of Beijing, China[J].Atmospheric Environment, 2007,41:8424-8430.
[23]
王迎红,王跃思.奥运前后北京及其周边大气六氟化硫浓度的变化[J].中国环境科学, 2010,30(7):941-945.Wang Y, Wang Y.Atmospheric sulfur hexafluoride in Beijing and near cities during the summer of 2008[J].China Environmental Science, 2010,30(7):941-945.
[24]
孙学志,万丹,史烨弘,等.北京市CFCs和CCl4浓度水平与变化趋势[J].环境科学研究, 2010,23(6):674-679.Sun X, Wan D, Shi Y, et al.Concentrations and trends of CFCs and CCl4 in the atmosphere of Beijing[J].Research of Environmental Sciences, 2010,23(6):674-679.
[25]
Fang X, Wu J, Su S, et al.Estimates of major anthropogenic halocarbon emissions from China based on interspecies correlations[J].Atmospheric Environment, 2012,62:26-33.
[26]
Yao B, Vollmer M, Zhou L, et al.In-situ measurements of atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) at the Shangdianzi regional background station, China[J].Atmospheric Chemistry and Physics, 2012,12:10181-10193.
[27]
陈立民,段杨,乐致威,等.大气中氟氯烃类物质浓度变化的研究[J].环境科学, 1999,20(1):27-29.Chen L, Duan Y, Yue Z, et al.Study on the trends of atmospheric CFCs[J].Environmental Science, 1999,20(1):27-29.
[28]
Wu L, Chen L, Li Y, et al.Study on the abundance of CFCs varying with the latitude at the bottom of the troposphere in the Southern Hemisphere[J].Environmental Science & Technology, 2001,35:2436-2440.
[29]
赵利容,王新明,何秋生,等.广州市街道空气中四氯化碳、三氯乙烯和四氯乙烯的暴露特征[J].中国环境监测, 2005,21(4):72-74.Zhao L, Wang X, He Q, et al.Characteristics of halocarbons in urban Guangzhou streets[J].Environmental Monitoring in China, 2005, 21(4):72-74.
[30]
张芳,王新明,易志刚,等.珠三角地区大气中HCFC-22的浓度观测和变化趋势初步研究[J].环境科学学报, 2006,26(6):987-991.Zhang F, Wang X, Yi Z, et al.Preliminary investigation on levels and trends of atmospheric chlorodifuoromethane (HCFC-22) in the Pearl River Delta[J].Acta Scientiae Circumstantiae, 2006,26(6):987-991.
[31]
Shao M, Huang D, Gu D, et al.Estimate of anthropogenic halocarbon emission based on measured ratio relative to CO in the Pearl River Delta region, China[J].Atmospheric Chemistry and Physics, 2011,11:5011-5025.
[32]
Wu J, Fang X, Martin J, et al.Estimated emissions of chlorofluorocarbons, hydrochlorofluorocarbons and hydrofluorocarbons based on an interspecies correlation method in the Pearl River Delta region, China[J].Science of the Total Environment, 2014,470-471:829-834.
[33]
Zhang Y, Wang X, Simpson I, et al.Ambient CFCs and HCFC-22observed concurrently at 84sites in the Pearl River Delta region during the 2008~2009 grid studies[J].Journal of Geophysical Research:Atmospheres, 2014,119:7699-7717.
[34]
Zheng P, Chen T, Dong C, et al.Characteristics and sources of halogenated hydrocarbons in the Yellow River Delta region, northern China[J].Atmospheric Research, 2019,225:70-80.
[35]
梁苗,姚波,陈丽曲,等.气相色谱-质谱联用法在线观测大气中的三氟化氮(NF3)[J].环境化学, 2018,37(10):2152-2158.Liang M, Yao B, Chen L, et al.In-situ measurement of atmospheric nitrogen trifluoride (NF3) using GC-MS method[J].Environmental Chemistry, 2018,37(10):2152-2158.
[36]
Zhang G, Yao B, Vollmer M, et al.Ambient mixing ratios of atmospheric halogenated compounds at five background stations in China[J].Atmospheric Environment, 2017,160:55-69.
[37]
中国城市温室气体工作组.中国城市温室气体排放数据集(2015)[M].北京:中国环境出版社, 2019.China City Greenhouse Gases Working Group.China city greenhouse gases emissions dataset (2015)[M].Beijing:China Environmental Publishing Group, 2019.
[38]
刘立新,周凌晞,张晓春,等.我国4个国家级本底站大气CO2浓度变化特征[J].中国科学D辑:地球科学, 2009,39(2):222-228.Liu L, Zhou L, Zhang X, et al.The characteristics of atmospheric CO2 concentration variation of four national background stations in China[J].Science in China.Ser.D-Earth Science, 2009,39(2):222-228.
[39]
Yao B, Fang X, Vollmer M, et al.China's hydrofluorocarbon emissions for 2011~2017 inferred from atmospheric measurements[J].Environmental Science & Technology Letters, 2019,6:479-486.
[40]
Ruckstuhl A, Jacobson M, Field R, et al.Baseline subtraction using robust local regression estimation[J].Journal of Quantitative Spectroscopy & Radiative Transfer, 2001,68(2):179-193.
[41]
Ruckstuhl A, Henne S, Reimann S, et al.Robust extraction of baseline signal of atmospheric trace species using local regression[J].Atmospheric Measurement Techniques, 2012,5:2613-2624.
[42]
周沙,刘宁,刘朝顺.2013~2015年上海市霾污染事件潜在源区贡献分析[J].环境科学学报, 2017,37(5):1835-1842.Zhou S, Liu N, Liu C.Identification for potential sources for haze events in Shanghai from 2013 to 2015[J].Acta Scientiae Circumstantiae, 2017,37(5):1835-1842.
[43]
夏佳琦,陈强,刘晓,等.乌海市臭氧传输特征与潜在源区[J].环境科学学报, 2021,41(8):3012-3020.Xia J, Chen Q, Liu X, et al.Transport characteristics and potential source of ozone in Wuhai[J].Acta Scientiae Circumstantiae, 2021, 41(8):3012-3020.
[44]
王中杰,霍娟,杜惠云,等.2015~2019年日照市PM2.5长期变化特征及其潜在源区分析[J].中国环境科学, 2021,41(9):3969-3980.Wang Z, Huo J, Du H, et al.Long term characteristics and potential sources of PM2.5 in Rizhao City from 2015 to 2019[J].China Environmental Science, 2021,41(9):3969-3980.
[45]
赵德龙,王飞,刘丹彤,等.北京市海坨山冬季不同污染过程下气溶胶化学组分及其潜在来源分析[J].环境科学, 2022,43(1):46-60.Zhao D, Wang F, Liu D, et al.Variation characteristics and potential sources of the Mt.Haituo aerosol chemical composition in different pollution processes during winter in Beijing, China[J].Environmental Science, 2022,43(1):46-60.
[46]
杜朋,李德平,刘建国,等.APEC前后北京郊区大气颗粒物变化特征及其潜在源区分析[J].环境科学学报, 2018,38(10):3846-3855.Du P, Li D, Liu J, et al.Pollution characteristics and potential source region analysis of atmospheric particulate matter during 2014 APEC in Beijing Surburban[J].Acta Scientiae Circumstantiae, 2018,38(10):3846-3855.