Review on emission reduction strategies of greenhouse gases in urban drainage network
XIONG Jie1, ZUO Xiao-jun1, LI Lu-cheng1, LI Ting2, LU Jian-gang1
1. School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. School of Chemistry and Materials, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract:In this study, microbial characteristics in urban drainage network were introduced, and the generation mechanism of greenhouse gases (GHGs) was analyzed, after summarizing the research status of GHGs in urban drainage networks at home and abroad. Furthermore, the physical and chemical methods (like Ferrate) of controlling CO2, CH4, and N2O were discussed, and finally, potential strategies for the emission reduction of GHGs in urban drainage networks were given. It is suggested that both natural chemical control (e.g., Urine) and resource utilization should be studied well to provide data and theoretical support for carbon emission reduction from urban drainage systems in future.
IPCC. Climate Change 2014:Synthesis Report. Contribution of Working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[R]. Geneva:Intergovernmental Panel on Climate Change, 2014.
[2]
The World Bank. Methane emissions[DB/OL]. https://data.worldbank.org.cn/indicator/EN.ATM.METH.KT.CE.2022-04-27/2022-08-23.
[3]
Prather M J, Hsu J, Deluca N M, et al. Measuring and modeling the lifetime of nitrous oxide including its variability[J]. Journal of Geophysical Research-Atmospheres, 2015,120(11):5693-5705.
[4]
Masuda S, Sato T, Mishima I, et al. Impact of nitrogen compound variability of sewage treated water on N2O production in riverbeds[J]. Journal of Environmental Management, 2021,290:112621.
[5]
Thaler K M, Berger C, Leix C, et al. Photoacoustic spectroscopy for the quantification of N2O in the off gas of wastewater treatment plants[J]. Analytical Chemistry, 2017,89(6):3795-3801.
[6]
Prinn R G, Weiss R F, Arduini J, et al. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE)[J]. Earth System Science Data, 2018,10(2):985-1018.
[7]
Climate Change 2022:Mitigation of Climate Change Chapter 8 Urban system and other settlements. Contribution of working groups III to the sixth assessment report of the intergovernmental panel on climate change[R]. Geneva:Intergovernmental Panel on Climate Change, 2022.
[8]
Climate Change 2022:Mitigation of climate change chapter 2 Emissions trends and drivers. Contribution of working groups III to the sixth assessment report of the intergovernmental panel on climate change[R]. Geneva:Intergovernmental Panel on Climate Change, 2022.
[9]
Jin P K, Gu Y G, Shi X, et al. Non-negligible greenhouse gases from urban sewer system[J]. Biotechnology for Biofuels, 2019,12(1):1-11.
[10]
《中国城乡建设统计年鉴-2020》编委会和编辑工作人员.中国城乡建设统计年鉴[M]. 北京:中国统计出版社, 2020:4-5. Editorial Board and Editorial Staff of China Urban-Rural Construction Statistical Yearbook-2020. China urban-rural construction statistical yearbook[M]. Beijing:China Statistics Press, 2020:4-5.
[11]
Statistisches Bundesamt. Umwelt:Fachserie 19, Reihe 2.1.3:Offentliche Wasserversorgung und Abwasserentsorgung 2016[DB/OL]. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/Wasserwirtschaft/Publikationen/Downloads-Wasserwirtschaft/wasserwirtschaft-2190213169004.pdf?__blob=publicationFile,2018-12-20/2022-08-23.
[12]
Berger C, Falk C, Hetzel F, et al. Zustand der kanalisation in deutschland:Ergebnisse der DWA-Umfrage 2020[J]. Korrespondenz Abwasser, Abfall, 2020,67:939-953.
[13]
张志恩,黄明利,谭忠盛.我国城市地下水道建设模式的思考[J]. 市政技术, 2016,34(5):113-117. Zhang Z E, Huang M L, Tan Z S. Construction mode of urban underground watercourse in China[J]. Municipal Engineering Technology, 2016,34(5):113-117.
[14]
徐祖信,徐 晋,金 伟,等.我国城市黑臭水体治理面临的挑战与机遇[J]. 给水排水, 2019,55(3):1-5,77. Xu Z X, Xu J, Jin W, et al. Challenges and opportunities of black and odorous water body in the cities of China[J]. Water & Wastewater Engineering, 2019,55(3):1-5,77.
[15]
郝 天,桂 萍,龚道孝.日本城市水系统发展历程[J]. 给水排水, 2021,57(1):84-89. Hao T, Gui P, Gong D X. Development history of urban water system in Japan[J]. Water & Wastewater Engineering, 2021,57(1):84-89.
[16]
Fries A E, Schifman L A, Shuster W D, et al. Street-level emissions of methane and nitrous oxide from the wastewater collection system in Cincinnati, Ohio[J]. Environmental Pollution, 2018,236:247-256.
[17]
Chen H, Ye J F, Zhou Y F, et al. Variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers:An assessment of the role of dissolved organic matter components and microbiota[J]. Environmental Pollution, 2020,263(Pt A):114489.
[18]
Yan X F, Sun J, Kenjiahan A, et al. Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms[J]. Water Research, 2020,169:115208.
[19]
Liu Y W, Sharma K R, Fluggen M, et al. Online dissolved methane and total dissolved sulfide measurement in sewers[J]. Water Research, 2015,68:109-118.
[20]
Chai H X, Deng S P, Zhou X Y, et al. Nitrous oxide emission mitigation during low-carbon source wastewater treatment:effect of external carbon source supply strategy[J]. Environmental Science and Pollution Research, 2019,26(22):23095-23107.
[21]
苑 心,李 轩,胡言午,等.隐形的地下碳源:城市排水管道CH4排放[J]. 给水排水, 2022,58(9):139-146. Yuan X, Li X, Hu Y W, et al. Potential carbon emission source underground:Fugitive methane emission in the urban sewers[J]. Water & Wastewater Engineering, 2022,58(9):139-146.
[22]
Liu Y W, Ni B J, Sharma K R, et al. Methane emission from sewers[J]. Science of the Total Environment, 2015,524:40-51.
[23]
Massie C, Stewart G, Mcgregor G, et al. Design of a portable optical sensor for methane gas detection[J]. Sensors and Actuators B-Chemical, 2006,113(2):830-836.
[24]
Pilao R, Ramalho E, Pinho C. Explosibility of cork dust in methane/air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2006,19(1):17-23.
[25]
Zuo Z, Ren D, Qiao L, et al. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers[J]. Water Research, 2021,203:117494.
[26]
Crabtree R W. Sediments in Sewers[J]. Water and Environment Journal, 1989,3(6):569-578.
[27]
He Q, Yin F, Li H, et al. Suitable flow pattern increases the removal efficiency of nitrogen in gravity sewers:a suitable anoxic and aerobic environment in biofilms[J]. Environmental Science and Pollution Research, 2018,25(16):15743-15753.
[28]
桑浪涛,石 烜,张 彤,等.城市污水管网中污染物冲刷与沉积规律[J]. 环境科学, 2017,38(5):1965-1971. Sang L T, Shi X, Zhang T, et al. Law of pollutant erosion and deposition in urban sewage network[J]. Environmental Science, 2017,38(5):1965-1971.
[29]
Ackers J, Butler D, Leggett D, et al. Design of sewers to control sediment problems[M]. London:Construction Industry Research and Information Association (CIRIA) Repprt 141,1996.
[30]
金鹏康,王 斌.城市污水管网对水质的生化改善特性[J]. 环境工程学报, 2016,10(7):3401-3408. Jin P K, Wang B. Improvement in biodegradability of wastewater quality in urban sewer system[J]. Chinese Journal of Environmental Engineering, 2016,10(7):3401-3408.
[31]
Liu Y, Ni B J, Ganigue R, et al. Sulfide and methane production in sewer sediments[J]. Water Research, 2015,70:350-359.
[32]
金鹏康,王晓昌.城市污水管网污染物迁移转化特性[M]. 北京:科学出版社, 2012. Jin P K, Wang X C. Characteristics of pollutant migration and transformation in urban sewer system[M]. Beijing:Science Press, 2012.
[33]
Marsh K L, Sims G K, Mulvaney R L. Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of C14 and N15 labeled urea added to soil[J]. Biology and Fertility of Soils, 2005,42(2):137-145.
[34]
Achenbach L A, Michaelidou U, Bruce R A, et al. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per) chlorate-reducing bacteria and their phylogenetic position[J]. International Journal of Systematic and Evolutionary Microbiology, 2001,51(Pt2):527-533.
[35]
Mechichi T, Stackebrandt E, Fuchs G. Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing beta-proteobacterium[J]. International journal of systematic and evolutionary microbiology, 2003,53(Pt1):147-152.
[36]
Han X, Wang Z, Ma J, et al. Membrane bioreactors fed with different COD/N ratio wastewater:impacts on microbial community, microbial products, and membrane fouling[J]. Environmental Science and Pollution Research, 2015,22(15):11436-11445.
[37]
Li C Y, Zhang D, Li X X, et al. The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield[J]. Journal of Hazardous Materials, 2016,304:388-399.
[38]
Singha T K. Microbial extracellular polymeric substances:production, isolation and applications[J]. IOSR Journal of Pharmacy, 2012,2(2):276-281.
[39]
Li W, Zheng T, Ma Y, et al. Current status and future prospects of sewer biofilms:Their structure, influencing factors, and substance transformations[J]. Science of the Total Environment, 2019,695:133815.
[40]
Jin P, Shi X, Sun G, et al. Co-Variation between distribution of microbial communities and biological metabolization of organics in urban sewer systems[J]. Environmental Science & Technology, 2018, 52(3):1270-1279.
[41]
孙光溪,金鹏康,宋吉娜,等.城市污水管网中产甲烷菌的分布特性规律[J]. 环境科学, 2016,37(6):2252-2258. Sun G X, Jin P K, Song J N, et al. Distribution characteristics of methanogens in urban sewer system[J]. Environmental Science, 2016,37(6):2252-2258.
[42]
祖 波,祖 建,周富春.产甲烷菌的生理生化特性[J]. 环境科学与技术, 2008,31(3):5-7. Zu B, Zu J, Zhou F C, et al. Biophysical and biochemical characteristics of methanogenic organism[J]. Environmental Science & Technology, 2008,31(3):5-7.
[43]
Horne A J, Lessner D J. Assessment of the oxidant tolerance of Methanosarcina acetivorans[J]. FEMS Microbiology Letters, 2013, 343(1):13-19.
[44]
Thauer R K. Biochemistry of methanogenesis:A tribute to marjory stephenson. 1998marjory stephenson prize lecture[J]. Microbiology (Reading, England), 1998,144(Pt9):2377-2406.
[45]
承 磊,郑珍珍,王 聪,等.产甲烷古菌研究进展[J]. 微生物学通报, 2016,43(5):1143-1164. Cheng L, Zheng Z Z, Wang C, et al. Recent advances in methanogens[J]. Microbiology China, 2016,43(5):1143-1164.
[46]
Sun J, Hu S, Sharma K R, et al. Stratified microbial structure and activity in sulfide-and methane-producing anaerobic sewer biofilms[J]. Applied and Environmental Microbiology, 2014,80(22):7042-7052.
[47]
Smith K S, Ingram-Smith C. Methanosaeta, the forgotten methanogen?[J]. Trends in Microbiology, 2007,15(4):150-155.
[48]
Starai V J, Escalante-Semerena J C. Acetyl-coenzyme A synthetase (AMP forming)[J]. Cellular and Molecular Life Sciences, 2004,61:2020-2030.
[49]
Chen H, Wang Z, Liu H, et al. Variable sediment methane production in response to different source-associated sewer sediment types and hydrological patterns:Role of the sediment microbiome[J]. Water Research, 2021,190:116670.
[50]
Mackelprang R, Waldrop M P, DeAngelis K M, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw[J]. Nature, 2011,480:368-371.
[51]
Eijo-Rio E, Petit-Boix A, Villalba G, et al. Municipal sewer networks as sources of nitrous oxide, methane and hydrogen sulphide emissions:A review and case studies[J]. Journal of Environmental Chemical Engineering, 2015,3:2084-2094.
[52]
Duan H, Ye L, Erler D, et al. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology-A critical review[J]. Water Research, 2017,122:96-113.
[53]
Duan H, Zhao Y, Koch K, et al. Insights into nitrous oxide mitigation strategies in wastewater treatment and challenges for wider implementation[J]. Environmental Science & Technology, 2021,55 (11):7208-7224.
[54]
Todt D, Dorsch P. Mechanism leading to N2O production in wastewater treating biofilm systems[J]. Reviews in Environmental Science and Biotechnology, 2016,15(3):355-378.
[55]
何万谦,郝吉明,施汉昌,等.澳门分流式排水管道生化反应特征分析[J]. 给水排水, 2008,44(S1):49-53. He W Q, Hao J M, Shi H C, et al. Analysis of the biochemical reaction characteristics in Macao separate storm drainage system[J]. Water & Wastewater Engineering, 2008,44(S1):49-53.
[56]
Short M D, Daikeler A, Peters G M, et al. Municipal gravity sewers:An unrecognised source of nitrous oxide[J]. Science of the Total Environment, 2014,468:211-218.
[57]
艾海男,王银亮,黄 维,等.不同水力条件下排水管道生物膜中氮元素分布特性[J]. 中国环境科学, 2015,35(10):2991-2995. Ai H N, Wang Y L, Huang W, et al. The distribution characteristics of nitrogen element in sewer biofilm under different hydraulic conditions[J]. China Environmental Science, 2015,35(10):2991-2995.
[58]
Ren D H, Zuo Z Q, Xing Y X, et al. Simultaneous control of sulfide and methane in sewers achieved by a physical approach targeting dominant active zone in sediments[J]. Water Research, 2022,211:118010.
[59]
Liu Y, Tugtas A E, Sharma K R, et al. Sulfide and methane production in sewer sediments:Field survey and model evaluation[J]. Water Research, 2016,89:142-150.
[60]
Gutierrez O, Sudarjanto G, Ren G, et al. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J]. Water Research, 2014,48:569-578.
[61]
Gutierrez O, Park D, Sharma K R, et al. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J]. Water Research, 2009,43(9):2549-2557.
[62]
Ganigue R, Yuan Z. Impact of oxygen injection on CH4 and N2O emissions from rising main sewers[J]. Journal of Environmental Management, 2014,144:279-285.
[63]
Lin H W, Lu Y, Ganigue R, et al. Simultaneous use of caustic and oxygen for efficient sulfide control in sewers[J]. Science of the Total Environment, 2017,601:776-783.
[64]
Jiang G M, Gutierrez O, Sharma K R, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J]. Water Research, 2010,44(14):4241-4251.
[65]
Jiang G M, Gutierrez O, Sharma K R, et al. Optimization of intermittent, simultaneous dosage of nitrite and hydrochloric acid to control sulfide and methane productions in sewers[J]. Water Research, 2011,45(18):6163-6172.
[66]
Auguet O, Pijuan M, Borrego C M, et al. Control of sulfide and methane production in anaerobic sewer systems by means of Downstream Nitrite Dosage[J]. Science of the Total Environment, 2016,550:1116-1125.
[67]
Mohanakrishnan J, Gutierrez O, Sharma K R, et al. Impact of nitrate addition on biofilm properties and activities in rising main sewers[J]. Water Research, 2009,43(17):4225-4237.
[68]
Kluber H D, Conrad R. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii[J]. FEMS Microbiology Ecology, 1998, 25(4):331-339.
[69]
Zhang G, Wang G, Zhou Y, et al. Simultaneous use of nitrate and calcium peroxide to control sulfide and greenhouse gas emission in sewers[J]. Science of the Total Environment, 2023,855:158913.
[70]
Zhang L S, Keller J, Yuan Z G. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J]. Water Research, 2009,43(17):4123-4132.
[71]
Cao J J, Zhang L, Hong J Y, et al. Different ferric dosing strategies could result in different control mechanisms of sulfide and methane production in sediments of gravity sewers[J]. Water Research, 2019,164:114914.
[72]
Zuo Z Q, Song Y R, Ren D H, et al. Control sulfide and methane production in sewers based on free ammonia inactivation[J]. Environment International, 2020,143:105928.
[73]
Wang J H, Zhang J, Xie H J, et al. Methane emissions from a full-scale A/A/O wastewater treatment plant[J]. Bioresource Technology, 2011,102(9):5479-5485.
[74]
孙锦宜.含氮废水处理技术与应用[M]. 北京:化学工业出版社, 2003. Sun J Y. Treatment Technology and Application of Nitrogen-Containing Waste Water Treatment[M]. Beijing:Chemical Industry Press, 2003.
[75]
Batstone D, Keller J, Angelidaki I, et al. Anaerobic digestion model No 1 (ADM1)[J]. Water Science and Technology, 2002,45:65-73.
[76]
Jarrell K F. Extreme oxygen sensitivity in methanogenic archaebacteria[J]. Biological Sciences, 1985,35(5):298-302.
[77]
Tugtas A E, Pavlostathis S G. Inhibitory effects of nitrogen oxides on a mixed methanogenic culture[J]. Biotechnology and Bioengineering, 2007,96(3):444-455.
[78]
Gombos E, Felfoldi T, Barkacs K, et al. Ferrate treatment for inactivation of bacterial community in municipal secondary effluent[J]. Bioresource Technology, 2012,107:116-121.
[79]
Jiang J Q, Wang S, Panagoulopoulos A. The exploration of potassium ferrate(VI) as a disinfectant/coagulant in water and wastewater treatment[J]. Chemosphere, 2006,63(2):212-219.
[80]
Hu L H, Page M A, Sigstam T, et al. Inactivation of bacteriophage MS2with potassium ferrate(VI)[J]. Environmental Science & Technology, 2012,46(21):12079-12087.
[81]
Talaiekhozani A, Talaei M R, Rezania S. An overview on production and application of ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater[J]. Journal of Environmental Chemical Engineering, 2017,5(2):1828-1842.
[82]
Schuck C A, De Luca S J, Peralba M D R, et al. Sodium ferrate (IV) and sodium hypochlorite in disinfection of biologically treated effluents. Ammonium nitrogen protection against THMs and HAAs[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2006,41(10):2329-2343.
[83]
Park S, Chung J, Rittmann B E, et al. Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor[J]. Biotechnology and Bioengineering, 2015,112(1):43-52.