Simulation of aerosol radiative forcing based on blue sky albedo
WANG Heng-yang1, LI Xiang-chen1, WANG Shuang2, TANG Hong-zhao3
1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2. Jilin Emergency Warning Information Dissemination Center, Changchun 130062, China; 3. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
Abstract:This article calculated the blue sky albedo using MODIS shortwave Black Sky Albedo (BSA) and White Sky Albedo (WSA) data combined with the 6S radiation transfer model simulated sky scattering light proportion factors. Based on the aerosol optical depths (AOD), particle size distribution, and complex refractive index data from the AERONET station in Baotou, the 6S radiation transfer model was used to simulate the surface (SFC) and top of atmosphere (TOA) ARF from 2018 to 2021. The differences between different types of albedos (BSA and WSA) and different aerosol models ARF and the true ARF were compared. The results showed that the average TOA ARF was (1.54±3.8)W/m2, and its value was related to the surface albedo and single scattering albedo (SSA). The continental and urban TOA ARF were positive values, about 2.2 and 8.6 times the real value, respectively. The desert TOA ARF was mostly negative, and in some months with large albedo, it was positive. The average SFC ARF was (-30.39±9.5)W/m2, with lower absolute values in summer and autumn. The continental, urban and desert SFC ARF were about 1.1, 1.76 and 0.77 times the real value, respectively, and different aerosol models had little effect on SFC ARF. The results of the three wavelengths method simulation of black carbon (BC) ARF showed that the average SFC and TOA BCARF were (-6.82±4.3)W/m2 and (2.23±1.5)W/m2, respectively, and SFC BCARF accounts for 7.3% to 40.4% of the total SFC ARF, with a higher proportion in summer.
王恒阳, 李祥琛, 王爽, 唐洪钊. 基于蓝天空反照率的气溶胶辐射强迫模拟[J]. 中国环境科学, 2023, 43(9): 4469-4477.
WANG Heng-yang, LI Xiang-chen, WANG Shuang, TANG Hong-zhao. Simulation of aerosol radiative forcing based on blue sky albedo. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(9): 4469-4477.
Rana A, Jia S G, Sarkar S. Black carbon aerosol in India:A comprehensive review of current status and future prospects[J]. Atmos Res, 2019,218:207-230.
[2]
Gharibzadeh M, Alam K, Abedini Y, et al. Climatological analysis of the optical properties of aerosols and their direct radiative forcing in the Middle East[J]. J Atmos Sol Terr Phys, 2019,183:86-98.
[3]
Knobelspiesse K, Cairns B, Redemann J, et al. Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign[J]. Atmos Chem Phys, 2011,11(13):6245-6263.
[4]
Lai C H, Lin C H, Liao C C. Respiratory deposition and health risk of inhalation of particle-bound heavy metals in the carbon black feeding area of a tire manufacturer[J]. Air Qual Atmos Health, 2017,10(10):1281-1289.
[5]
Srivastava A K, Yadav V, Pathak V, et al. Variability in radiative properties of major aerosol types:A year-long study over Delhi An urban station in Indo-Gangetic Basin[J]. Sci Total Environ, 2014,473:659-666.
[6]
Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature, 2001,409(6821):695-697.
[7]
Cappa C D, Onasch T B, Massoli P, et al. Radiative absorption enhancements due to the mixing state of atmospheric black carbon[J]. Science, 2012,337(6098):1078-1081.
[8]
Satheesh S K, Vinoj V, Moorthy K K. Radiative effects of aerosols at an urban location in southern India:Observations versus model[J]. Atmos Environ (1994), 2010,44(39):5295-5304.
[9]
陈勇航,白鸿涛,黄建平,等.西北典型地域云对地气系统的辐射强迫研究[J]. 中国环境科学, 2008,28(2):97-101. Chen Y H, Bai H T, Huang J P, et al. Comparison of cloud radiative forcing on the atmosphere-earth system over Northwestern China with respect to typical geo-topographic regions[J]. China Environmental Science, 2008,28(2):97-101.
[10]
屈垚,刘卉昆,周岳,等.西安冬季大气棕碳光学特征及辐射强迫[J]. 中国环境科学, 2022,42(10):4486-4493. Qu Y, Liu H K, Zhou Y, 等. Optical properties and radiative forcing contribution of brown carbon in Xi'an during winter[J]. China Environmental Science, 2022,42(10):4486-4493.
[11]
Bibi S, Alam K, Chishtie F, et al. Observations of black carbon aerosols characteristics over an urban environment:Radiative forcing and related implications[J]. Sci Total Environ, 2017,603:319-329.
[12]
Hansen J, Sato M, Kharecha P, et al. Earth's energy imbalance and implications[J]. Atmos Chem Phys, 2011,11(24):13421-13449.
[13]
唐利琴,胡波,刘慧,等.近十年北京气溶胶光学特性及直接辐射强迫研究[J]. 气候与环境研究, 2021,26(2):155-168. Tang L Q, Hu B, Liu H, et al. Aerosol optical properties and direct radiative forcing in Beijing in the recent decade[J]. Climatic and Environmental Research, 2021,26(2):156-169.
[14]
Garcia O E, Diaz J P, Exposito F J, et al. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data[J]. Atmos Chem Phys, 2012,12(11):5129-5145.
[15]
李雅雯,陈健,张海龙,等.基于GOCI数据的霾天气气溶胶辐射强迫的日内变化——以长江三角洲为例[J]. 中国环境科学, 2019, 39(2):497-505. Li Y W, Chen J, Zhang H L, et al. Diurnal variations of aerosol radiative effect under haze weather condition using GOCI data-A case study of Yangtze River[J]. China Environmental Science, 2019,39(2):497-505.
[16]
Bouvet M, Thome K, Berthelot B, et al. RadCalNet:A radiometric calibration network for earth observing imagers operating in the visible to shortwave infrared spectral range[J]. Remote Sens (Basel), 2019,11(20).
[17]
贺欣,周茹,姚媛,等.基于AERONET的中国地区典型站点气溶胶类型变化特征[J]. 中国环境科学, 2020,40(2):485-496. He X, Zhou R, Yao Y, et al. The spatiotemporal variations of aerosol types in representative sites of China basing on the Aerosol Robotic Network[J]. China Environmental Science, 2020,40(2):485-496.
[18]
Nichol J E, Bilal M. Validation of MODIS 3km Resolution Aerosol Optical Depth Retrievals Over Asia[J]. Remote Sens (Basel), 2016, 8(4).
[19]
Dubovik O, King M D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements[J]. J Geophys Res Atmos, 2000,105(D16):20673-20696.
[20]
Petrenko M, Ichoku C, Leptoukh G. Multi-sensor aerosol products sampling system (MAPSS)[J]. Atmos Meas Tech, 2012,5(5):913-926.
[21]
Chen W, Wang H Y, Zhao H M, et al. Google Earth Engine-assisted black carbon radiative forcing calculation over a heavy industrial city in China[J]. Air Qual Atmos Health, 2020,13(3):329-338.
[22]
Xiong X, Sun J, Xie X, et al. On-Orbit Calibration and performance of aqua MODIS reflective solar bands[J]. Ieee Trans Geosci Remote Sens, 2010,48(1):535-546.
[23]
Stokes G M, Schwartz S E. The atmospheric radiation measurement (ARM) program:Programmatic background and design of the cloud and radiation test bed[J]. Bull Am Meteorol Soc, 1994,75(7):1201-1221.
[24]
Lewis P, Barnsley M J. Influence of the sky radiance distribution on various formulations of the Earth surface albedo[J]. International Symposium on Physical Measurements & Signatures in Remote Sensing Isprs, 1994:701-715.
[25]
Boiyo R, Kumar K R, Zhao T L, et al. A 10-year record of aerosol optical properties and radiative forcing over three environmentally distinct AERONET sites in Kenya, East Africa[J]. J Geophys Res Atmos, 2019,124(3):1596-1617.
[26]
Chen Y, Schleicher N, Fricker M, et al. Long-term variation of black carbon and PM2.5 in Beijing, China with respect to meteorological conditions and governmental measures[J]. Environ Pollut, 2016, 212:269-278.
[27]
Wild M, Ohmura A, Makowski K. Impact of global dimming and brightening on global warming[J]. Geophys Res Lett, 2007,34(4):4702-4705.
[28]
Russell P B, Bergstrom R W, Shinozuka Y, et al. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition[J]. Atmos Chem Phys, 2010,10(3):1155-1169.
[29]
陈斌.利用卫星和AERONET观测资料对东亚地区吸收性气溶胶识别及其光学特征分析[D]. 兰州:兰州大学, 2012. Chen B. Detection Light-Absorbing Aerosols and Their Properties from Satellite and AERONET Observations over East Asia[D]. Lanzhou:Lanzhou University, 2012.
[30]
Papadimas C D, Hatzianastassiou N, Matsoukas C, et al. The direct effect of aerosols on solar radiation over the broader Mediterranean basin[J]. Atmos Chem Phys, 2012,12(15):7165-7185.
[31]
肖钟湧,江洪.长江三角洲地区大气顶气溶胶直接辐射强迫遥感估算[J]. 中国环境科学, 2013,33(5):799-807. Xiao Z Y and Jiang H. Estimations of aerosol direct radiative forcing at the top of the atmosphere using remote sensing data in Yangtze River Delta region[J]. China Environmental Science, 2013,33(5):799-807.
[32]
王文君.基于卫星和地基观测的长三角地区气溶胶直接辐射效应研究[D]. 南京信息工程大学, 2016. Wang W J. Study on aerosol direct radiative effect based on satellite and ground observation in Yangtze river delta[D]. Nanjing:Nanjing University of Information Science and Technology, 2016.
[33]
田军,王体健,庄炳亮,等.南京北郊黑碳气溶胶的浓度观测及辐射强迫研究[J]. 气候与环境研究, 2013,18(5):662-670. Tian J, Wang T J, Zhuang B L, et al. Study on concentration and radiative forcing of black carbon aerosol in suburban Nanjing[J]. Climatic and Environmental Research, 2013,18(5):662-670.