Analysis of the driving forces of vegetation dynamic changes in southwest China
ZENG Xing-lan1, CHEN Tian-tian1,2
1. Chongqing Key Laboratory of Surface Process and Environment Remote Sensing in the Three Gorges Reservoir Area, Chongqing Normal University, Chongqing 401331, China; 2. Chongqing Field Observation and Research Station of Surface Ecological Process in the Three Gorges Reservoir Area, Chongqing 401331, China
Abstract:Based on the Normalized Difference Vegetation Index (NDVI), land use and climate datasets, this study analyzed the trend of change in vegetation growth and clarified the impact of climate change and urban expansion on vegetation dynamics in southwest China by the ensemble empirical mode decomposition, partial correlation analysis and segmented linear regression. The results showed that the NDVI in the southwest China fluctuating increased, indicating an obvious vegetation greening trend; spatially, the regions with high NDVI were distribution in the southeast part and the regions with low NDVI were concentrated at the northwest part. Compared to the solar radiation and precipitation, the influencing scale and degree of temperature on regional vegetation growth was relatively large, accounting for approximately 64.6% of the study area, mainly distributed in the central and western parts of the study area. The land urbanization, economy urbanization and demographic urbanization increased over time, and the spatial distribution of these three urbanizations was relatively consistent. At the county scale, the correlation between economic urbanization, demographic urbanization and vegetation growth increased firstly and then decreased, showing a nonlinear characteristic; while there was a negative correlation between land urbanization and vegetation growth. At the grid scale, the relationship between these three urbanization and vegetation growth remains unchanged; but there were significant differences in the thresholds of nonlinear relationship and the slope of linear relationship. This study can provide scientific reference for implementing more precise ecological management measures and achieving sustainable socio-economic development in this region.
[1] 刘晓曼,王超,高吉喜,等.服务双碳目标的中国人工林生态系统碳增汇途径[J]. 生态学报, 2023,43(14):5662-5673. Liu X M, Wang C, Gao J X, et al. Approaches to carbon sequestration enhancement in China's plantation ecosystem for carbon peaking and carbon neutrality goals[J]. Acta Ecologica Sinica, 2023,43(14):5662-5673. [2] 黎喜,杨胜天,罗娅,等.国家生态文明试验区(贵州)经济增速与植被恢复协调发展[J]. 中国环境科学, 2022,42(9):4333-4342. Li X, Yang S T, Luo Y, et al. Coordinated development of economic growth and vegetation restoration in the national ecological civilization pilot zone (Guizhou)[J]. China Environmental Science, 2022,42(9):4333-4342. [3] 姜萍,胡列群,肖静,等.新疆植被NDVI时空变化及定量归因[J]. 水土保持研究, 2022,29(2):212-220,242. Jiang P, Hu L Q, Xiao J, et al. Spatiotemporal dynamics of NDVI in Xinjiang and quantitative attribution based on geodetector[J]. Research of Soil and Water Conservation, 2022,29(2):212-220,242. [4] Hawinkel P, Swinnen E, Lhermitte S, et al. A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD)[J]. Remote Sensing of Environment, 2015,169(1/2):375-389. [5] Roy D P, Borak J S, Devadiga S, et al. The MODIS land product quality assessment approach[J]. Remote Sensing of Environment, 2002,83(1/2):62-76. [6] 石淞,李文,丁一书,等.东北地区植被时空演变及其对气候变化和人类活动的响应[J]. 中国环境科学, 2023,43(1):276-289. Shi S, Li W, Ding Y S, et al. Spatiotemporal evolution of vegetation and its response to climate change and human activities in Northeast China[J]. China Environmental Science, 2023,43(1):276-289. [7] 王文志,刘晓宏,陈拓,等.基于祁连山树轮宽度指数的区域NDVI重建[J]. 植物生态学报, 2010,34(9):1033-1044. Wang W Z, Liu X H, Chen T, et al. Reconstruction of regional NDVI using tree-ring width chronologies in the Qilian Mountain, northwestern China[J]. Chinese Journal of Plant Ecology, 2010,34(9): 1033-1044. [8] Lhermitte S, Verbesselt J, Jonckheere I, et al. Hierarchical image segmentation based on similarity of NDVI time series[J]. Remote Sensing of Environment, 2008,112(2):506-521. [9] 朱靖轩,刘雯,李振炜,等.喀斯特流域径流对植被和气候变化的多尺度响应[J]. 生态学报, 2020,40(10):3396-3407. Zhu J X, Liu W, Li Z W, et al. Multi-scale response of runoff to vegetation and climate change in karst watershed[J]. Acta Ecologica Sinica, 2020,40(10):3396-3407. [10] 张煦,马驿,郑雯,等.基于时序MODIS-NDVI的油菜种植面积变化趋势分析——以江汉平原为例[J]. 长江流域资源与环境, 2016,25(3):412-419. Zhang X, Ma Y, Zheng W, et al. Variation trend of rape cultivation area based on MODIS-NDVI time series data—a case in Jianghan Plain[J]. Resources and Environment in the Yangtze Basin, 2016,25(3):412-419. [11] 覃巧婷,陈建军,杨艳萍,等.黄河源植被时空变化及其对地形和气候的响应[J]. 中国环境科学, 2021,41(8):3832-3841. Qin Q T, Chen J J, Yang Y P, et al. Spatiotemporal variations of vegetation and its response to topography and climate in the source region of the Yellow River[J]. China Environmental Science, 2021, 41(8):3832-3841. [12] 刘炜,焦树林.喀斯特流域极端气候变化特征及对NDVI的影响[J]. 水土保持学报, 2022,36(5):220-232. Liu W, Jiao S L. Characteristics of extreme climate change in karst basins and its impact on NDVI[J]. Journal of Soil and Water Conservation, 2022,36(5):220-232. [13] 耿庆玲,陈晓青,赫晓慧,等.中国不同植被类型归一化植被指数对气候变化和人类活动的响应[J]. 生态学报, 2022,42(9):3557-3568. Geng Q L, Chen X Q, He X H, et al. Vegetation dynamics and its response to climate change and human activities based on different vegetation types in China[J]. Acta Ecologica Sinica, 2022,42(9): 3557-3568. [14] 刘宪锋,朱秀芳,潘耀忠,等.1982~2012年中国植被覆盖时空变化特征[J]. 生态学报, 2015,35(16):5331-5342. Liu X F, Zhu X F, Pan Y Z, et al. Spatiotemporal changes in vegetation coverage in China during 1982~2012[J]. Acta Ecologica Sinica, 2015,35(16):5331-5342. [15] 赵婷,白红英,邓晨晖,等.2000~2016年秦岭山地植被覆盖变化地形分异效应[J]. 生态学报, 2019,39(12):4499-4509. Zhao T, Bai H Y, Deng C H, et al. Topographic differentiation effect of vegetation cover in the Qinling Mountains from 2000 to 2016[J]. Acta Ecologica Sinica, 2019,39(12):4499-4509. [16] 赵丹,王祖伟,张国壮,等.因子回归和交互联合探索区域植被覆盖度的影响因素——以三江源地区为例[J]. 中国环境科学, 2022, 42(8):3903-3912. Zhao D, Wang Z W, Zhang G Z, et al. Identifying factors affecting regional fractional vegetation cover based on a combination of factor regression and interactive—A case study on the Three-River Headwaters Region[J]. China Environmental Science, 2022,42(8): 3903-3912. [17] 柴立夫,田莉,奥勇,等.人类活动干扰对青藏高原植被覆盖变化的影响[J]. 水土保持研究, 2021,28(6):382-388. Chai L F, Tian L, Ao Y, et al. Influence of human disturbance on the change of vegetation cover in the Tibetan Plateau[J]. Research of Soil and Water Conservation, 2021,28(6):382-388. [18] 金凯,王飞,韩剑桥,等.1982~2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020,75(5):961-974. Jin K, Wang F, Han J Q, et al. Contribution of climate change and human activities on vegetation NDVI change over China during 1982~2015[J]. Acta Geographica Sinica, 2020,75(5):961-974. [19] Zhang X M, Brandt M, Yue Y M, et al. The carbon sink potential of southern China after two decades of afforestation[J]. Earth's Future, 2022,10(12),e2022EF002674. [20] 戴强玉,徐勇,赵纯,等.四川盆地植被EVI动态变化及其驱动机制[J]. 中国环境科学, 2023,43(8):4292-4304. Dai Q Y, Xu Y, Zhao C, et al. Dynamic variation of vegetation EVI and its driving mechanism in the Sichuan Basin[J]. China Environmental Science, 2023,43(8):4292-4304. [21] 洪辛茜,黄勇,孙涛.我国西南喀斯特地区2001~2018年植被净初级生产力时空演变[J]. 生态学报, 2021,41(24):9836-9846. Hong X Q, Huang Y, Sun T. Spatiotemporal evolution of vegetation net primary productivity in the karst region of southwestern China from 2001 to 2018[J]. Acta Ecologica Sinica, 2021,41(24):9836-9846. [22] 程东亚,李旭东,杨江州.西南山地流域NDVI变化特征及降水敏感性——以贵州沅江流域为[J]. 生态学报, 2020,40(4):1161-1174. Cheng D Y, Li X D, Yang J Z. Research on NDVI variation characteristics and precipitation sensitivity of Yuanjiang River Basin in Guizhou province[J]. Acta Ecologica Sinica, 2020,40(4):1161-1174. [23] 张凯选,范鹏鹏,王军邦,等.西南喀斯特地区植被变化及其与气候因子关系研究[J]. 生态环境学报, 2019,28(6):1080-1091. Zhang K X, Fan P P, Wang J B, et al. Study on vegetation change and climate factors in a karst region of southwestern China[J]. Ecology and Environmental Sciences, 2019,28(6):1080-1091. [24] 马炳鑫,和彩霞,靖娟利,等.1982~2019年中国西南地区植被变化归因研究[J]. 地理学报, 2023,78(3):714-728. Ma B X, He C X, Jing J L, et al. Attribution of vegetation dynamics in southwestern China from 1982 to 2019[J]. Acta Geographica Sinica, 2023,78(3):714-728. [25] 徐勇,卢云贵,戴强玉,等.气候变化和土地利用变化对长江中下游地区植被NPP变化相对贡献分析[J]. 中国环境科学, 2023,43(9): 4988-5000 Xu Y, Lu Y G, Dai Q Y, et al. Assessment of the relative contribution of climate change and land use change on net primary productivity variation in the middle and lower reaches of the Yangtze River Basin[J]. China Environmental Science, 2023,43(9):4988-5000. [26] 熊巧利,何云玲,李同艳,等.西南地区生长季植被覆盖时空变化特征及其对气候与地形因子的响应[J]. 水土保持研究, 2019,26(6): 259-266. Xiong Q L, He Y L, Li T Y, et al. Spatiotemporal patterns of vegetation coverage response to climatic and topographic factors in growth season in southwestern China[J]. Research of Soil and Water Conservation, 2019,26(6):259-266. [27] 何宏昌,马炳鑫,靖娟利,等.近20年西南喀斯特地区植被NPP时空变化及自然因素地理探测[J]. 水土保持研究, 2022,29(3):172-178, 188. He H C, Ma B X, Jing J L, et al. Spatiotemporal changes of NPP and natural factors in the southwestern karst areas from 2000 to 2019[J]. Research of Soil and Water Conservation, 2022,29(3):172-178,188. [28] Zhao D M, Wu J. The Influence of Urban Surface Expansion in China on Regional Climate[J]. Journal of Climate, 2017,30:1061-1080. [29] Cao Q, Yu D Y, Georgescu M, et al. Impacts of future urban expansion on summer climate and heat-related human health in eastern China[J]. Environment International, 2018,112:134-146. [30] 马海云,张林林,魏学琼,等.2000~2015年西南地区土地利用与植被覆盖的时空变化[J]. 应用生态学报, 2021,32(2):618-628. Ma H Y, Zhang L L, Wei X Q, et al. Spatial and temporal variations of land use and vegetation cover in Southwest China from 2000 to 2015[J]. Chinese Journal of Applied Ecology, 2021,32(2):618-628. [31] 刘晓琼,孙曦亮,刘彦随,等.基于REOF-EEMD的西南地区气候变化区域分异特征[J]. 地理研究, 2020,39(5):1215-1232. Liu X Q, Sun X L, Liu Y S, et al. Spatial division of climate change and its evolution characteristics in Southwest China based on REOF-EEMD[J]. Geographical Research, 2020,39(5):1215-1232. [32] Ji F, Wu Z H, Huang J P, et al. Evolution of land surface air temperature trend[J]. Nature Climate Change, 2014,4:462-466. [33] Chen X Y, Zhang X B, Church J A, et al. The increasing rate of global mean sea-level rise during 1993~2014[J]. Nature Climate Change, 2017,7:492-495. [34] Feng X M, Fu B J, Zhang Y, et al. Recent leveling off of vegetation greenness and primary production reveals the increasing soil water limitations on the greening Earth[J]. Science Bulletin, 2021,66(14): 1462-1471. [35] 罗爽,刘会玉,龚海波.1982~2018年中国植被覆盖变化非线性趋势及其格局分析[J]. 生态学报, 2022,42(20):8331-8342. Luo S, Liu H Y, Gong H B. Nonlinear trends and spatial pattern analysis of vegetation cover change in China from 1982 to 2018[J]. Acta Ecologica Sinica, 2022,42(20):8331-8342. [36] Song F J, Wang S J, Bai X Y, et al. A new indicator for global food security assessment: harvested area rather than cropland area[J]. Chinese Geographical Science, 2022,32,204-217. [37] Jian P, Lu T, Liu Y, et al. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification[J]. Science of the Total Environment, 2017,607-608(31):706-714. [38] Yang J, Huang C H, Zhang Z R, et al. The temporal trend of urban green coverage in major Chinese cities between 1990 and 2010[J]. Urban Forestry & Urban Greening, 2014,13(1):19-27. [39] Jiang S S, Chen X, Smettem K, et al. Climate and land use influences on changing spatiotemporal patterns of mountain vegetation cover in southwest China[J]. Ecological Indicators, 2021,121:107193. [40] 杨艳蓉,侯召朕,张增信.2001~2018年西南地区NDVI变化特征及影响因素[J]. 水土保持通报, 2021,41(2):337-344. Yang Y R, Hou Z Z, Zhang Z X. NDVI changes and driving factors in Southwest China from 2001 to 2018[J]. Bulletin of Soil and Water Conservation, 2021,41(2):337-344. [41] Shen M G, Cong N, Cao R Y, et al. Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982~2008[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2015,35(12):3707-3712. [42] Koch, A. Peaking productivity by 2060[J]. Nature Climate Change, 2022,12:505-506. [43] 欧阳晓,朱翔.中国城市群城市用地扩张时空动态特征[J]. 地理学报, 2020,75(3):571-588. Ouyang X, Zhu X. Spatio-temporal characteristics of urban land expansion in Chinese urban agglomerations[J]. Acta Geographica Sinica, 2020,75(3):571-588. [44] Zhong Q Y, Ma J, Zhao B, et al. Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000~2016[J]. Remote Sensing of Environment, 2019,233:111374. [45] Lian X H, Jiao L M, Liu Z J. Saturation response of enhanced vegetation productivity attributes to intricate interactions[J]. Global Change Biology, 2022,29(4):1080-1095. [46] Grimm N B, Faeth. Global change and the ecology of cities[J]. Science, 2008,319(5864):756-760. [47] 高江波,吴绍洪,蔡运龙.区域植被覆盖的多尺度空间变异性——以贵州喀斯特高原为例[J]. 地理研究, 2013,32(12):2179-2188. Gao J B, Wu S H, Cai Y L. Investigating the spatial heterogeneity of vegetation cover at multi-scales: A case study in karst Guizhou Plateau of China[J]. Geographical Research, 2013,32(12):2179-2188. [48] 卢乔倩,江涛,柳丹丽,等.中国不同植被覆盖类型NDVI对气温和降水的响应特征[J]. 生态环境学报, 2020,29(1):23-34. Lu Q Q, Jiang T, Liu D L, et al. The response characteristics of NDVI with different vegetation cover types to temperature and precipitation in China[J]. Ecology and Environmental Sciences, 2020,29(1):23-34. [49] Zhang L, Yang L, Zohner C M, et al. Direct and indirect impacts of urbanization on vegetation growth across the world's cities[J]. Science Advances, 2022,8(27):eabo0095.