1. College of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; 2. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract:In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity and richness of the phyllosphere bacterial community, and PICRUSt2 software was used to predict the nitrogen metabolism and other functional genes of the phyllosphere bacteria based on the gene sequencing results, and the denitrification rate of the phyllosphere bacteria was measureed. The results showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla in the phyllosphere bacteria of Photinia plants, and Achromobacter, Burkholderia-Caballeronia-Paraburkholderia, and Hymenobacter were the dominant genera, and the dominant bacteria were the same at different locations in the same region. In addition, it was also found that Achromobacter, Massilia, and Sphingomonas, which have denitrification functionsthere, distributed in the phyllosphere of Photinia. The PICRUSt2prediction showed that the metabolic function pathway is dominant of the 6primary functional layers of phyllosphere bacteria, and the membrane transport function is dominant in the 30 secondary functional layers. Meanwhile, the abundance of denitrification related genes is the highest among nitrogen metabolism functional genes, and the abundance of nitrogen fixation related genes is the lowest. The measured denitrification rate of phyllosphere bacteria is (22.2 ± 1.7)-(33.2 ± 4.7) μg/(g·h).
[1] 郑林雪,李军,胡家玮,等.同步硝化反硝化系统中反硝化细菌多样性研究[J]. 中国环境科学, 2015,35(1):116-121. Zheng X L, Li J, Hu J W, et al. Analysis of denitrifying bacteria community composition in simultaneous nitrification and denitrification systems [J]. China Environmental Science, 2015,35(1): 116-121. [2] Sohrabi R, Paasch B C, Liber J A, et al. Phyllosphere microbiome [J]. Annual Review of Plant Biology, 2023,74:539-568. [3] Bashir I, War A F, Rafiq I, et al. Phyllosphere microbiome: Diversity and functions [J]. Microbiological Research, 2022,254:126888. [4] Vignatti P, Gonzalez M E, Jofr E C, et al. Botrydial confers Botrytis cinerea the ability to antagonize soil and phyllospheric bacteria [J]. Fungal Biology, 2020,124(1):54-64. [5] Thapa S, Prasanna R, Ranjan K, et al. Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice [J]. Microbiological Research, 2017,204:55-64. [6] Massart S, Martinez-medinA M, Jijakli M H. Biological control in the microbiome era: Challenges and opportunities [J]. Biological Control, 2015,89:98-108. [7] Bringel F, Besaury L, Amato P, et al. Methylotrophs and methylotroph populations for chloromethane degradation [J]. Current Issues in Molecular Biology, 2019,33:149-172. [8] Aziz L, Desch Nes L, Karim R A, et al. Including metal atmospheric fate and speciation in soils for terrestrial ecotoxicity in life cycle impact assessment [J]. The International Journal of Life Cycle Assessment, 2018,23:2178-2188. [9] 李慧娟,徐爱玲,乔凤禄,等.冬青和女贞叶表面颗粒物微形态及叶际细菌群落结构[J]. 环境科学, 2021,42(6):3063-3073. Li H J, Xu A L, Qiao F L, et al. Micro-morphological characteristics of Particles on Holly and Ligustrum leaf surfaces and seasonal changes in bacterial communities [J]. Environmental Science, 2021, 42(6):3063-3073. [10] 贾彤,姚玉珊,王瑞宏.铜尾矿白羊草叶际和根际细菌群落特征[J]. 环境科学, 2020,41(12):5628-5635. Jia T, Yao Y S, Wang R H. Characteristics of Phyllosphere and Rhizosphere bacterial communities in Bothriochloa ischaemum in copper tailings [J]. Environmental Science, 2020,41(12):5628-5635. [11] 刘利玲,李会琳,蒙振思,等.青杨雌雄株叶际微生物群落多样性和结构的差异[J]. 微生物学报, 2020,60(3):556-569. Liu L L, Li H L, Meng Z S, et al. Differences in phyllosphere microbial communities between female and male Populus cathayana [J]. Acta Microbiologica Sinica, 2020,60(3):556-569. [12] Jia S, Chen Y, Huang R, et al. Study on phyllosphere microbial community of nettle leaf during different seasons [J]. Agriculture, 2023,13(6),1271. [13] Peng Z, Lou T, Jiang K, et al. Characteristics of nutrients removal under partial denitrification initiated by different initial nitrate concentration [J]. Bioprocess and Biosystems Engineering, 2021,44(10):2051-2059. [14] 徐爱玲,蒋敏,白萍萍,等.青岛城市公园3种植物叶表面颗粒物形态特征及叶际细菌群落结构[J]. 地球环境学报, 2023,14(4): 458-471. Xu A L, Jiang M, Bai P P, et al. Characteristics of particles on leaf surface and phyllosphere bacterial community of three plant species in urban parks of Qingdao [J]. Journal of Earth Environment, 2023,14(4): 458-471. [15] Estaki M, Jiang L, Bokulich N A, et al. QIIME 2enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data [J]. Current Protocols in Bioinformatics, 2020,70(1):e100. [16] Douglas G M, Maffei V J. PICRUSt2for prediction of metagenome functions [J]. Nature Biotechnology, 2020,38(6):685-688. [17] 王革林,谷立坤,于鲁冀,等.汛期前后不同土地利用类型河流浮游细菌组成及功能预测:以清潩河(许昌段)为例[J]. 环境科学研究, 2023,36(9):1691-1704. Wang G L, Gu L K, Yu L J, et al. Differences in composition and functional prediction of river bacterioplankton under different land use types before and after flood season: A case study of Qingyi River [J]. Research of Environmental Sciences, 2023,36(9):1691-1704. [18] Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome [J]. Environmental Microbiology, 2012,14(1):4-12. [19] 乌吉斯古冷,潘雅清,胡金鹏,等.长叶红砂叶际细菌和真菌群落对季节变化的响应特征[J]. 微生物学通报, 2023,50(1):48-63. Wu J, Pan Y Q, Hu J P, et al. Response of phyllosphere bacteria and fungi of Reaumuria trigyna to seasonal change [J]. Microbiology China, 2023,50(1):48-63. [20] Li X, Omolehin O, Hemmings G, et al. Boxwood phyllosphere fungal and bacterial communities and their differential responses to film-forming anti-desiccants [J]. BMC Microbiology, 2023,23(1):219. [21] Watanabe K, Kohzu A, Suda W, et al. Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy [J]. SpringerPlus, 2016,5(1):1596. [22] Wang K, Li Y, Wu Y, et al. Improved grain yield and lowered arsenic accumulation in rice plants by inoculation with arsenite-oxidizing Achromobacter xylosoxidans GD03[J]. Ecotoxicology and Environmental Safety, 2020,206:111229. [23] 李哲,陈潼樾,冷粟,等.一株氧化木糖无色杆菌对Pb的生物矿化作用及其应用效果研究[J]. 农业环境科学学报, 2017,36(10): 2014-2020. Li Z, Chen T Y, Leng S, et al. Biomineralization of Pb by a strain of Achromobacer xylosoridans and its praelieal aplcalion in bioremediation [J]. Journal of Agro-Environment Seienee, 2017,36(10):2014-2020. [24] 任晓宇,李英华,李海波,等.纳米银对反硝化无色杆菌的毒性作用[J]. 环境工程, 2022,40(2):27-33,80. Ren X Y, Li Y H, Li H B, et al. Toxicity of silver nanoparticles to Achromobacter denitrificans [J]. Environmental Engineering, 2022, 40(2):27-33,80. [25] Dandie C E, Burton D L, Zebarth B J, et al. Analysis of denitrification genes and comparison of nosZ, cnorB and 16S rDNA from culturable denitrifying bacteria in potato cropping systems [J]. Systematic and Applied Microbiology, 2007,30(2):128-138. [26] Tagele S B, Kim S W, Lee H G, et al. Potential of novel sequence type of burkholderia cenocepacia for biological control of Root Rot of Maize (Zea mays L.) caused by Fusarium temperatum [J]. International Journal of Molecular Sciences, 2019,20(5):1005. [27] 李一依,赵勇娇,刘芳,等.马赛菌属Massilia neuiana异养硝化-好氧反硝化脱氮特征实验[J]. 环境工程, 2020,38(10):103-107. Li Y Y Zhao Y J, Liu F, et al. Analysis on the heterotrophic nitrification-aerobic denitrification characteristics of the new species of Massilia neuiana [J]. Environmental Engineering, 2020,38(10): 103-107. [28] 易宏学,李杰,王亚娥,等.具有铁氧化和好氧反硝化功能的Achromobacter denitrificans strain 2-5对序批式反应器生物脱氮性能及群落结构的影响[J]. 环境工程, 2022,40(12):211-216. Yi H X, Li J, Wang Y A, et al. Effects of Achromobacter denitrificans strain 2-5with iron oxidation and aerobic denitrification function on biological nitrogen removal performance and community structure in a sequencing batch reactor [J]. Environmental Engineering, 2022,40(12): 211-216. [29] 刘辉,韦璐璐,朱龙发,等.鞘氨醇单胞菌的研究进展[J]. 微生物学通报, 2023,50(6):2738-2752. Liu H, Wei L L, Zhu L F, et al. Research progress of Sphingomonas [J]. Microbiology China, 2023,50(6):2738-2752. [30] 张建云,谷立坤,王亚西,等.植物叶际好氧反硝化细菌的筛选及其脱氮性能研究.微生物学报, 2024,64(5):1521-1537. Zhang J Y, Gu L K, Wang Y X, et al. Aerobic denitrifying bacteria in the phyllosphere: screening and characterizing of nitrogen removal performance [J]. Acta Microbiologica Sinica, 2024,64(5):1521-1537. [31] 周慧娜,张涛,徐自恒,等.山桐子叶际微生物群落多样性、结构及功能预测分析[J]. 经济林研究, 2022,40(4):163-172. Zhou H N, Zhang T, Xu Z H, et al. Diversity, structure and function prediction of phyllospheric microorganism community in Idesia polycarpa [J]. Non-wood Forest Research, 2022,40(4):163-172. [32] 杜宇佳,高广磊,陈丽华,等.呼伦贝尔沙区土壤细菌群落结构与功能预测[J]. 中国环境科学, 2019,39(11):4840-4848. Du Y J, Gao G L, Chen L H, et al. Soil bacteria community structure and function prediction in the Hulun Buir Sandy Area [J]. China Environmental Sciencece, 2019,39(11):4840-4848. [33] 王敏,张雨桐,黄晨,等.西安市景观湖泊水体细菌群落结构分析与代谢功能预测[J]. 环境科学, 2023,44(2):847-856. Wang M, Zhang Y T, Huang C, et al. Bacterial community structure and the prediction of metabolic function in Landscape Lake Water in Xi’an [J]. Environmental Science, 2023,44(2):847-856. [34] Sun Y, Wang M, Mur L A J. Unravelling the roles of nitrogen nutrition in plant disease defences [J]. 2020,21(2):572. [35] Fang Y, Koba K, Makabe A, et al. Microbial denitrification dominates nitrate losses from forest ecosystems [J]. Proceedings of the National Academy of Sciences, 2015,112(5):1470-1474