Abstract:This study focuses on the karst depression in Fenghuang Village, Zhongliang Mountain, Chongqing, using the composite fingerprinting technique. An optimal combination of fingerprint properties was selected to quantify the contributions of potential sources to the depression deposits by using multivariate linear mixed model (IsoSource) and Bayesian mixed models (MixSIAR, SIMMR, and SIAR). In addition, the applicability of these models was further assessed by using their root mean square error (RMSE) and in combination with previous reports. Results indicated that the cumulative identification accuracy of the five fingerprint properties, i.e., the total carbon (TC) content, sand content, grain size at 70% frequency (D70), soil organic carbon (SOC) content, and sulfur (S) content, reached 89.5%, and therefore these properties constituted an optimal combination. The RMSE values for the four models were: MixSIAR (2.05), SIMMR (2.05), SIAR (2.07), IsoSource (2.34). Since the RMSEs of the three Bayesian mixed models were lower than that of the IsoSource model, the applicability of the Bayesian mixed models for quantifying the contributions of sediment sources to the depression deposits was higher than that of the multivariate linear mixed model. Among the three Bayesian mixed models, the MixSIAR and SIMMR models had the highest accuracy. Results from the MixSIAR and SIMMR models indicated that arable land was the primary source of the depression deposits, followed by ditch walls, with forest and grassland contributing the least. The composite fingerprinting technique could effectively quantify the sediment sources in the small watersheds in the depression. In this study, the composite fingerprinting technique was employed to unveil the sediment source of depression deposits in a typical karst trough valley in Southwest China, aiming to provide a reference for model selection in similar studies.
戴涛, 蒋勇军, 田兴, 刘芳, 韩莎, 罗淑娥. 基于复合指纹法解析西南岩溶小流域泥沙来源[J]. 中国环境科学, 2025, 45(2): 954-965.
DAI Tao, JIANG Yong-jun, TIAN Xing, LIU Fang, HAN Sha, LUO Shu-e. Analysis of sediment sources in karst small watersheds in Southwest China using composite fingerprinting technique. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(2): 954-965.
[1] Amundson R, Berhe A A, Hopmans J W, et al. Soil and human security in the 21st century [J]. Science, 2015,348(6235):647-653. [2] Borrelli P, Robinson D A, Fleischer L R, et al. An assessment of the global impact of 21st century land use change on soil erosion [J]. Nature Communications, 2017,8(1):103921. [3] Pimentel D, Burgess M. Soil Erosion Threatens Food Production [J]. Agriculture, 2013,3(3):443-463. [4] 陈 雷.中国的水土保持 [J]. 中国水土保持, 2002,(7):8-10.Chen L. Soil and water conservation in China [J]. Soil and Water Conservation in China, 2002,(7):8-10. [5] 李智广,曹 炜,刘秉正,等.我国水土流失状况与发展趋势研究 [J]. 中国水土保持科学, 2008,6(1):57-62.Li Z G, Cao W, Liu B Z, et al. Current status and developing trend of soil erosion in China [J]. Science of Soil and Water Conservatio, 2008, 6(1):57-62. [6] 中华人民共和国水利部.2023年中国水土保持公报 [EB/OL]. http://www.mwr.gov.cn/sj/tjgb/zgstbcgb/202403/t20240329_1708287.html.Ministry of Water Resources of the People's Republic of China. 2023 China Water and Soil Conservation Bulletin [EB/OL] . http://www. mwr.gov.cn/sj/tjgb/zgstbcgb/202403/t20240329_1708287.html. [7] 易兴松,戴全厚,严友进,等.西南喀斯特地区耕地撂荒生态环境效应研究进展 [J]. 生态学报, 2023,43(3):925-936.Yi X S, Dai Q H, Yan Y J, et al. Research progress on the ecological environment effect of farmland abandonment in karst areas of Southwest China [J]. Acta Ecologica Sinica, 2023,43(3):925-936. [8] 蒋忠诚,罗为群,邓 艳,等.岩溶峰丛洼地水土漏失及防治研究 [J]. 地球学报, 2014,35(5):535-542.Jiang Z C, Luo W Q, Deng Y, et al. The leakage of water and soil in the karst peak cluster depression and its prevention and treatment [J]. Acta Geoscientica Sinica, 2014,35(5):535-542. [9] Dai Q, Liu Z, Shao H, et al. Karst bare slope soil erosion and soil quality: a simulation case study [J]. Solid Earth, 2015,6(3):985-995. [10] 彭旭东,戴全厚,李昌兰.中国西南喀斯特坡地水土流失/漏失过程与机理研究进展 [J]. 水土保持学报, 2017,31(5):1-8.Peng X D, Dai Q H, Li C L. Research progress on the process and mechanism of soil water loss or leakage on slope in southwest karst of China [J]. Journal of Soil and Water Conservation, 2017,31(5):1-8. [11] 蒋忠诚,曹建华,杨德生,等.西南岩溶石漠化区水土流失现状与综合防治对策 [J]. 中国水土保持科学, 2008,6(1):37-42.Jiang Z C, Cao J H, Yang D S, et al. Current status and comprehensive countermeasures of soil erosion for karst rocky desertification areas in the Southwestern China [J]. Science of Soil and Water Conservation, 2008,6(1):37-42. [12] 蒋忠诚,罗为群,邓 艳,等.广西岩溶区的水土流失特点及其防治 [J]. 广西科学, 2018,25(5):449-455.Jiang Z C, Luo W Q, Deng Y. Features and treatment of soil erosion in karst areas of Guangxi [J]. Guangxi Sciences 2018,25(5):449-455. [13] 蒋忠诚,李振炜,罗为群,等.西南岩溶区水土漏失研究进展与展望 [J]. 中国水土保持科学(中英文), 2024,22(3):1-11.Jiang Z C, Li Z W, Luo W Q, et al. Research progress and prospect of soil and water leakage in karst areas of Southwest China [J]. Science of Soil and Water Conservation, 2024,22(3):1-11. [14] 马 东,杜志勇,吴 娟,等.强降雨下农田径流中溶解态氮磷的输出特征——以崂山水库流域为例 [J]. 中国环境科学, 2012,32(7): 1228-1233.Ma D, Du Z Y, Wu J, et al. Characterization of dissolved nitrogen and phosphorus transportation in farmland runoff under heavy rain—take Laoshan Reservoir watershed as example [J]. China Environmental Science, 2012,32(7):1228-1233. [15] 谢骁健,苏正安,周 涛,等.桑干河流域淤地坝沉积泥沙特征及其来源解析 [J]. 水土保持学报, 2024,38(1):49-59.Xie X J, Su Z A, Zhou T, et al. Sediment characteristics and sources tracing of warping dam in Sanggan river basin [J]. Journal of Soil and Water Conservation, 2024,38(1):49-59. [16] 李佳蕾,孙然好,熊木齐,等.基于RUSLE模型的中国土壤水蚀时空规律研究 [J]. 生态学报, 2020,40(10):3473-3485.LI J L, Sun R H, Xiong M Q, et al. Estimation of soil erosion based on the RUSLE model in China [J]. Acta Ecologica Sinica, 2020,40(10): 3473-3485. [17] 左长清,郭乾坤.关于径流小区若干技术问题的研究 [J]. 中国水土保持, 2016,6:43-47.Zuo C Q, Guo Q K. Soil and water conservation in china [J]. Soil and water conservation in China, 2016,6:43-47. [18] 徐微涛,张少良,赵广印,等.复合指纹法解析典型黑土小流域侵蚀泥沙来源 [J]. 中国环境科学, 2023,43(11):5998-6006.Xv W T, Zhang S L, Zhao G Y, et al. Analysis of erosion sediment sources in typical Mollisols watershed by composite fingerprinting technique [J]. China Environmental Science 2023,43(11):5998-6006. [19] Collins A L, Walling D E, Leeks G J L. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique [J]. Catena, 1997,29(1):1-27. [20] Collins A L, Walling D E, Webb L, et al. Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information [J]. Geoderma, 2010,155(3):249-261. [21] Chen F X, Fang N F, Shi Z H. Using biomarkers as fingerprint properties to identify sediment sources in a small catchment [J]. Science of The Total Environment, 2016,557:123-133. [22] 陈 英,魏兴萍,张爱国,等.基于复合指纹法的岩溶洼地小流域泥沙来源解析 [J]. 水土保持学报, 2020,34(5):131-136.Chen Y, Wei X P, Zhang A G, et al. Analysis of sediment source in small watershed of karst depression based on composite fingerprint method [J]. Journal of Soil and Water Conservation, 2020,34(5): 131-136. [23] 常维娜,周慧平,高 燕.基于复合指纹法的九乡河小流域泥沙来源解析 [J]. 水土保持学报, 2014,28(6):106-110.Chang W N, Zhou H P, Gao Y. Sediment sources apportionment in a small catchment of the upper Jiuxiang river using composite fingerprinting [J]. Journal of Soil and Water Conservation, 2014,28(6): 106-110. [24] 张信宝,贺秀斌,文安邦,等.川中丘陵区小流域泥沙来源的137Cs和210Pb双同位素法研究 [J]. 科学通报, 2004,49(15):1537-1541.Zhang X B, He X B, Wen A B, et al. Study on the source of sediment in small watersheds in the hilly area of the sichuan basin using dual isotope method of 137Cs and 210Pb [J]. Chinese Science Bulletin, 2004,49(15):1537-1541. [25] 程倩云,彭 韬,张信宝,等.西南喀斯特小流域地表、地下河流细粒泥沙来源的137Cs和磁化率双指纹示踪研究 [J]. 水土保持学报, 2019,33(2):140-145.Cheng Q Y, Peng T, Zhang X B, et al. Tracing fine sediment sources in the surface and subsurface rivers of a karst watershed using compound fingerprinting with 137Cs and magnetic susceptibility in Southwest China [J]. Journal of Soil and Water Conservatio, 2019,33(2):140-145. [26] Li Z W, Xu X L, Zhang Y H, et al. Fingerprinting sediment sources in a typical karst catchment of southwest China [J]. International Soil and Water Conservation Research, 2020,8(3):277-285. [27] Parnell A C, Phillips D L, Bearhop S, et al. Bayesian stable isotope mixing models [J]. Environmetrics, 2013,24(6):387-399. [28] 王艳碧,周忠发,孔 杰,等.基于水化学与氮氧同位素的喀斯特山区水体硝酸盐来源示踪与估算——以平寨水库为例 [J]. 中国环境科学, 2023,43(10):5265-5276.Wang Y B, Zhou Z F, Kong J. Tracing and estimation of nitrate sources based on hydrochemistry and nitrogen and oxygen isotopes in karst mountainous water: A case study of the Pingzhai reservoir [J]. China Environmental Science, 2023,43(10):5265-5276. [29] 杜鹏飞,黄东浩,秦 伟,等.基于不同模型不同指纹因子的东北黑土区小流域泥沙来源分析 [J]. 水土保持学报, 2020,34(1):84-91.Du P F, Huang D H, Qin W, et al. Sediment sources in a small watershed located in the black soil region of northeast China based on different models and various finger prints [J]. Journal of Soil and Water Conservation, 2020,34(1):84-91. [30] 刘海霞,李素霞,刘广龙,等.基于复合指纹图谱和贝叶斯模型的茅尾海悬浮颗粒物源解析 [J]. 中国环境科学, 2022,42(6):2844-2851.Liu H X, Li S X, Liu G L, et al. Analysis of the source of suspended particulate matter in the Maowei Sea based on composite fingerprint map and Bayesian model [J]. China Environmental Science 2022, 42(6):2844-2851. [31] 邱 菊,蒋勇军,吕同汝,等.典型岩溶槽谷区土壤水和地下水氢氧稳定同位素对隧道建设的响应 [J]. 地球科学, 2022,47(2):717-728.Qiu J, Jiang Y J, Lv T R, et al. Response of stable isotopes of hydrogen and oxygen in soil water and groundwater to tunnel construction in typical karst trough valley [J]. Earth Science, 2022,47(2):717-728. [32] 张远瞩,蒋勇军,李 勇,等.隧道工程对喀斯特槽谷区坡面产流及土壤侵蚀的影响 [J]. 生态学报, 2019,39(16):6126-6135.Zhang Y Z, Jiang Y J, Li Y, et al. Effects of tunnel excavation on slope runoff and soil erosion in a karst trough valley [J]. Acta Ecologica Sinica, 2019,39(16):6126-6135. [33] 汪啟容,蒋勇军,郝秀东,等.孢粉记录的重庆岩溶槽谷区700年来植被演替与喀斯特石漠化 [J]. 生态学报, 2021,41(9):3634-3644.Wang Q R, Jiang Y J, Hao X D, et al. A 700—year record of vegetation and rocky desertification evolution based on palynological data of the karst valley area, Chongqing City, China [J]. Acta Ecologica Sinica, 2021,41(9):3634-3644. [34] Collins A L, Walling D E. Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins [J]. Journal of Hydrology, 2002,261(1):218-244. [35] Palazón L, Gaspar L, Latorre B, et al. Identifying sediment sources by applying a fingerprinting mixing model in a Pyrenean drainage catchment [J]. Journal of Soils and Sediments, 2015,15(10):2067-2085. [36] Lizaga I, Latorre B, Gaspar L, et al. FingerPro: An R package for tracking the provenance of sediment [J]. Water Resources Management, 2020,34(12):3879-3894. [37] Wang J, Lu N, Fu B. Inter-comparison of stable isotope mixing models for determining plant water source partitioning [J]. Sci. Total Environ., 2019,666:685-693. [38] 曾祥明,徐宪立,钟飞霞,等.MixSIAR和IsoSource模型解析植物水分来源的比较研究 [J]. 生态学报, 2020,40(16):5611-5619.Zeng X M, Xu X L, Zhong F X, et al. Comparative study of MixSIAR and IsoSource models in the analysis of plant water sources [J]. Acta Ecologica Sinica, 2020,40(16):5611-5619. [39] Carter J, Owens P, Walling D, et al. Fingerprinting suspended sediment sources in a large urban river system [J]. Sci. Total Environ., 2003, 314:513-534. [40] Mabit L, Gibbs M, Mbaye M, et al. Novel application of Compound Specific Stable Isotope (CSSI) techniques to investigate on-site sediment origins across arable fields [J]. Geoderma, 2018,316:19-26. [41] Li C F, Wang Z C, Li Z W, et al. Using geochemical elements to discriminate sediment sources in a typical karst watershed [J]. Soil and Tillage Research, 2023,232:105778. [42] Wang B, Zhang G H, Yang Y F, et al. The effects of varied soil properties induced by natural grassland succession on the process of soil detachment [J]. Catena, 2018,166:192-199. [43] Zhang X C, Zhang G H, Garbrecht J D, et al. Dating sediment in a fast sedimentation reservoir using cesium-137 and lead-210 [J]. Soil Science Society of America Journal, 2015,79(3):948-956. [44] 张彩云,蒋勇军,马丽娜,等.岩溶槽谷区不同土地利用方式下的坡地产流产沙规律 [J]. 水土保持通报, 2021,41(1):49-55.Zhang C Y, Jiang Y J, Ma L N, et al. Characteristics of runoff and sediment on slope land with different land use in karst trough valley area [J]. Bulletin of Soil and Water Conservation, 2021,41(1):49-55. [45] Dong Y F, Cao W Y, Nie Y, et al. Influence of soil geography on the occurrence and intensity of gully erosion in the Hengduan Mountain region [J]. Catena, 2023,222:106841. [46] Dong Y F, Xiong D H, Su Z A, et al. Effects of vegetation buffer strips on concentrated flow hydraulics and gully bed erosion based on in situ scouring experiments [J]. Land Degradation & Development, 2018, 29(6):1672-1682. [47] Frankl A, Poesen J, Haile M, et al. Quantifying long-term changes in gully networks and volumes in dryland environments: The case of Northern Ethiopia [J]. Geomorphology, 2013,201:254-263. [48] Guo Q K, Shan Z J, Lu W, et al. Fingerprinting sediment sources in two typical watersheds in the dry-hot valleys of Southwest China: The role of gully and orchard land [J]. Catena, 2023,233:107479. [49] 李红梅,巴贺贾依娜尔·铁木尔别克,常顺利,等.MixSIAR和IsoSource模型对比分析天山北坡不同灌木的夏季水分来源 [J]. 干旱区研究, 2023,40(3):445-455.LI H M, Bahejiayinaer T, Chang S L, et al. Comparative analysis of summer water sources of different shrubs on the northern slope of Tianshan Mountains by MixSIAR and IsoSource models [J]. Arid Zone Research, 2023,40(3):445-455. [50] Parnell A C, Inger R, Bearhop S, et al. Source partitioning using stable isotopes: coping with too much variation [J]. PLoS One, 2010,5(3): e9672. [51] Moore J W, Semmens B X. Incorporating uncertainty and prior information into stable isotope mixing models [J]. Ecology Letters, 2008,11(5):470-480. [52] Koiter A J, Owens P N, Petticrew E L, et al. The role of soil surface properties on the particle size and carbon selectivity of interrill erosion in agricultural landscapes [J]. Catena, 2017,153:194-206. [53] 张祥稳,惠富平,戴家翠.历史时期长江下游山地丘陵区玉米生产引发水土流失及其成因研究 [J]. 中国水土保持, 2019,12:74-77.Zhang X W, Hui F P, Dai J C. Research on soil erosion and its causes caused by corn production in the mountainous and hilly regions of the lower Yangtze River in historical period [J]. Soil and Water Conservation in China, 2019,12:74-77. [54] 文安邦,张信宝,王玉宽,等.长江上游云贵高原区泥沙来源的137Cs法研究 [J]. 水土保持学报, 2000,14(2):25-27.Wen A B, Zhang X B, Wang Y K, et al. Study on sedimentation source using caesium-137 technique in Yungui plateau region of upper Yangtze river [J]. Journal of Soil and Water Conservation, 2000,14(2): 25-27. [55] 刘定辉,李 勇.植物根系提高土壤抗侵蚀性机理研究 [J]. 水土保持学报, 2003,17(3):34-37.Liu D H, Li Y. Mechanism of plant roots improving resistance of soil to concentrated flow erosion [J]. Journal of Soil and Water Conservation, 2003,17(3):34-37. [56] 谭学进,穆兴民,高 鹏,等.黄土区植被恢复对土壤物理性质的影响 [J]. 中国环境科学, 2019,39(2):713-722.Tan X J, Mu X M, Gao P. Effects of vegetation restoration on changes to soil physical properties on the loess plateau [J]. China Environmental Science, 2019,39(2):713-722. [57] Lamba J, Karthikeyan K G, Thompson A M. Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting [J]. Geoderma, 2015,239:25-33. [58] Hughes A O, Olley J M, Croke J C, et al. Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia [J]. Geomorphology, 2009,104(3):262-275. [59] Motha J A, Wallbrink P J, Hairsine P B, et al. Determining the sources of suspended sediment in a forested catchment in southeastern Australia [J]. Water Resources Research, 2003,39(3):1056.