The spatiotemporal dynamic changes in net anthropogenic nitrogen input (NANI) in Quzhou from 2003 to 2022
YANG Yu-hang1, HAN Yu-guo1,2,3, ZHANG Xiao-lin4, DUAN Wei-li1
1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; 2. Forest Ecosystem Studies, National Observation and Research Station, Jixian 042200, China; 3. Key Laboratory of National Forestry and Grassland Administration on Soil and Water Conservation, Beijing 100083, China; 4. Quzhou Wuxi River Drinking Water Source Protection Management Center, Quzhou 324003, China
Abstract:The Net Anthropogenic Nitrogen Input (NANI) model was utilized to estimate nitrogen inputs to Quzhou for the period from 2003 to 2022, and its spatial and temporal patterns, variations in components, and determining factors were examined. The results indicated that the average NANI for Quzhou over the past two decades was 12925kg/(km2·a), with a peak of 15698kg/(km2·a) in 2011. The spatial distribution was found to demonstrate an east-high and west-low pattern, which was consistent with land-use configurations. The predominant component of NANI was nitrogen fertilizer, which contributed 27% to 41%, followed by net nitrogen input from food/feed at 22% to 42%, atmospheric nitrogen deposition at 21% to 33%, and nitrogen fixation at 7% to 11%. The variations in NANI were primarily driven by nitrogen fertilizer application between 2003 and 2008, food/feed inputs between 2009 and 2014, and atmospheric deposition in recent years. Strategies were proposed to mitigate NANI, including promoting new energy vehicles, reducing nitrogen fertilizer application to align with standards of agriculturally advanced nations, and regulating livestock and poultry farming to match local demand. It was anticipated that these measures would decrease NANI by approximately 833, 893, and 896kg/(km2·a), respectively, achieving a cumulative reduction of about 2622kg/(km2·a), positioning it among the lower levels globally.
杨雨航, 韩玉国, 张小林, 段维利. 2003~2022年衢州市人类活动净氮输入(NANI)的时空动态变化[J]. 中国环境科学, 2025, 45(4): 2075-2085.
YANG Yu-hang, HAN Yu-guo, ZHANG Xiao-lin, DUAN Wei-li. The spatiotemporal dynamic changes in net anthropogenic nitrogen input (NANI) in Quzhou from 2003 to 2022. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(4): 2075-2085.
[1] Swaney D P, Hong B, Ti C, et al. Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters:a brief overview[J]. Current Opinion in Environmental Sustainability, 2012,4(2):203-211. [2] 张小林,张靖天,迟春娟,等.乌溪江梯级水库的营养特征及水生态健康评价[J].环境工程技术学报, 2018,8(5):502-509. Zhang X L, Zhang J T, Chi C J, et al. Nutritional characteristics and aquatic ecosystem health assessment in cascade reservoirs of Wuxijiang[J]. Journal of Environmental Engineering Technology, 2018,8(5):502-509. [3] 姚梦雅,胡敏鹏,陈丁江.1980~2015年长江流域净人为氮输入与河流氮输出动态特征[J].环境科学, 2021,42(12):5777-5785. Yao M Y, Hu M P, Chen D J. Dynamic of net anthropogenic nitrogen inputs and riverine nitrogen export in the Yangtze River Basin from 1980 to 2015[J]. Environmental Science, 2021,42(12):5777-5785. [4] Howarth R W, Billen G, Swaney D, et al. Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean:Natural and human influences[J]. Biogeochemistry, 1996,35(1):75-139. [5] Hayakawa A, Woli K, Shimizu M, et al. Nitrogen budget and relationships with riverine nitrogen exports of a dairy cattle farming catchment in eastern Hokkaido, Japan[J]. Soil Science& Plant Nutrition, 2009,55(6):800-819. [6] Billen G, Silvestre M, Grizzetti B, et al. Nitrogen flows from European regional watersheds to coastal marine waters[M]//Sutton M A, Howard C M, Erisman J W, et al. The European Nitrogen Assessment. Cambridge, UK:Cambridge University Press, 2011:271-297. [7] Han Y G, Fan Y, Yang P L, et al. Net anthropogenic nitrogen inputs (NANI) index application in Chinese mainland[J]. Geoderma, 2014,213:87-94. [8] Swaney D P, Hong B, Selvam A P, et al. Net anthropogenic nitrogen inputs and nitrogen fluxes from Indian watersheds:An initial assessment[J]. Journal of Marine Systems, 2015,141:45-58. [9] 韩玉国,李叙勇,南哲,等.北京地区2003~2007年人类活动氮累积状况研究[J].环境科学, 2011,32(6):1537-1545. Han Y G, Li X Y, Nan Z, et al. Net anthropogenic nitrogen accumulation in the Beijing metropolitan region from 2003 to 2007[J]. Environmental Science, 2011,32(6):1537-1545. [10] Grizzetti B, Bouraoui F, Granlund K, et al. Modelling diffuse emission and retention of nutrients in the Vantaanjoki Watershed (Finland) using the SWAT Model[J]. Ecological Modelling, 2003,169(1):25-38. [11] 吴哲,陈歆,刘贝贝,等.基于InVEST模型的海南岛氮磷营养物负荷的风险评估[J].热带作物学报, 2013,34(9):1791-1797. Wu Z, Chen X, Liu B B, et al. Risk assessment of nitrogen and phosphorus loads in Hainan Island based on InVEST model[J]. Chinese Journal of Tropical Crops, 2013,34(9):1791-1797. [12] 贾彦龙,王秋凤,朱剑兴,等.1996~2015年中国大气无机氮湿沉降时空格局数据集[J].中国科学数据(中英文网络版), 2019,4(1):8-17. Jia Y L, Wang Q F, Zhu J X, et al. A spatial and temporal dataset of atmospheric inorganic nitrogen wet deposition in China (1996~2015)[J]. China Scientific Data, 2019,4(1):8-17. [13] 贾彦龙,王秋凤,朱剑兴,等.2006~2015年中国大气无机氮干沉降时空格局数据集[J].中国科学数据(中英文网络版), 2021,6(2):213-221. Jia Y L, Wang Q F, Zhu J X, et al. A spatial and temporal dataset of atmospheric inorganic nitrogen dry deposition in China (2006~2015)[J]. China Scientific Data, 2021,6(2):213-221. [14] 顾峰雪,黄玫,张远东,等.1961~2010年中国区域氮沉降时空格局模拟研究[J].生态学报, 2016,36(12):3591-3600. Gu F X, Huang M, Zhang Y D, et al. Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961~2010[J]. Acta Ecologica Sinica, 2016,36(12):3591-3600. [15] 王江飞.杭嘉湖大气氮、磷沉降特征及其对水环境的影响[D].杭州:浙江工业大学, 2017. Wang J F. Atmospheric deposition of nitrogen and its effect on the water environment in the Hangjiahu area[D]. Hangzhou:Zhejiang University of Technology, 2015. [16] 廖忠鹭,李平,商栩.温州典型地区大气氮、磷沉降的城郊差异[J].浙江农业科学, 2015,56(1):123-126. Liao Z L, Li P, Shang X. Urban-rural differences of atmospheric nitrogen and phosphorus deposition in typical areas of Wenzhou[J]. Journal of Zhejiang Agricultural Sciences, 2015,56(1):123-126. [17] 国家发展计划委员会.全国农产品成本收益资料汇编[M].北京:中国物价出版社, 2022. State development Planning Commission. Compilation of national agricultural product cost and income data[M]. Beijing:China Price Press, 2022. [18] Battye R, Battye W, Overcash C, et al. Development and selection of ammonia emission factors. Final report, February-August 1994:PB-95-123915/XAB[R]. Durham, NC, USA:EC/R, Inc., 1994. [19] Jordan T, Weller D. Human contributions to terrestrial nitrogen flux[J]. Bio Science, 1996,46(9):655-664. [20] 张柏发,陈丁江.1980~2010年浙江某典型河流硝态氮通量对净人类活动氮输入的动态响应[J].环境科学, 2014,35(8):2911-2919. Zhang B F, Chen D J. Dynamic response of riverine nitrate flux to net anthropogenic nitrogen inputs in a typical river in Zhejiang Province over the 1980~2010 period[J]. Environmental Science, 2014(8):2911-2919. [21] 武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D].北京:中国农业科学院, 2005. Wu S X. The spatial and temporal change of nitrogen and phosphorus produced by livestock and poultry& their effects on agricultural non-point pollution in China[D]. Beijing:Chinese Academy of Agricultural Sciences, 2005. [22] Van Horn H H. Factors affecting manure quantity, quality, and use[C]//Proceedings of the mid-south ruminant nutrition conference. Fort Worth, TX, USA:Texas Animal Nutrition Council, 1998:9-20. [23] 杨月欣.中国食物成分表[M].北京:北京医科大学出版社, 2005. Yang Y X. China food composition table[M]. Beijing:Peking University Medical Press, 2005. [24] Burns R C, Hardy R W F. Nitrogen Fixation in Bacteria and Higher Plants. 1975. Molecular Biology, Biochemistry and Biophysics[J]. Soil Science, 1976,122(2):353-354. [25] 窦新田.生物固氮[M].北京:农业出版社, 1989. Dou X T. Biological nitrogen fixation[M]. Beijing:Agriculture Press, 1989. [26] Yang J, Huang X. The 30m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925. [27] 衢州市统计局.衢州统计年鉴[M].北京:中国统计出版社, 2023. Quzhou Statistics Bureau. Quzhou statistical yearbook[M]. Beijing:China Statistics Press, 2023. [28] 邓陈宁,张泽乾,徐睿,等.成渝地区双城经济圈人类活动氮磷输入时空演变及其驱动因素[J].环境科学研究, 2022,35(7):1596-1604. Deng C N, Zhang Z Q, Xu R, et al. Spatiotemporal evolution and driving factors of nitrogen and phosphorus input from human activities in Chengdu-Chongqing economic circle[J]. Research of Environmental Sciences, 2022,35(7):1596-1604. [29] 王俊,黄洁钰,李方圆,等.潮河流域人类活动氮输入对河流硝态氮通量的影响[J].农业环境科学学报, 2023,42(1):142-154. Wang J, Huang J Y, Li F Y, et al. Influence of anthropogenic nitrogen input on river nitrate nitrogen flux in the Chaohe River watershed[J]. Journal of Agro-Environment Science, 2023,42(1):142-154. [30] 曹敏,吴东少,段仲昭,等.亚热带流域人类活动净氮输入与河流输出响应--以东江为例[J].环境科学学报, 2023,43(8):428-439. Cao M, Wu D S, Duan Z Z, et al. Estimating net anthropogenic nitrogen inputs and riverine export in a subtropical watershed:a case study of Dongjiang River[J]. Acta Scientiae Circumstantiae, 2023,43(8):428-439. [31] 徐浩林,杨培岭,邢伟民,等.湖北省2008~2017年人类活动净氮输入状况[J].中国环境科学, 2020,40(9):4017-4028. Xu H L, Yang P L, Xing W M, et al. Net anthropogenic nitrogen accumulation in Hubei Province from 2008 to 2017[J]. China Environmental Science, 2020,40(9):4017-4028. [32] 丁雪坤,王云琦,韩玉国,等.三峡库区人类活动净氮输入量估算及其影响因素[J].中国环境科学, 2020,40(1):206-216. Ding X K, Wang Y Q, Han Y G, et al. Evaluating net anthropogenic nitrogen inputs and its influencing factors in the Three Gorges Reservoir Area[J]. China Environmental Science, 2020,40(1):206-216. [33] Zhou X, Chen C, Chen F, et al. Changes in net anthropogenic nitrogen input in the watershed region of Zhanjiang Bay in south China from 1978 to 2018[J]. Environment Development and Sustainability, 2021, 23(12):17201-17219. [34] 国家统计局.中国环境统计年鉴2022[M].中国统计出版社, 2022. China Statistical Yearbook on Environment 2022 Editorial Board and Staff. China statistical yearbook on environment 2022[M]. Beijing:China Statistics Press, 2022. [35] 农业农村部种植业管理司.2021年春季主要农作物科学施肥指导意见[J].中华人民共和国农业农村部公报, 2021,(3):85-104. Planting Management Department of the Ministry of Agriculture and Rural Affairs. Letter on printing and distributing the guidelines on science-based fertilizer use for major spring crops in 2021[J]. Gazette of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2021,(3):85-104. [36] 李晓虹,刘宏斌,雷秋良,等.人类活动净氮输入时空变化特征及其影响因素--以香溪河流域为例[J].中国环境科学, 2019,39(2):812-817. Li X H, Liu H B, Lei Q L, et al. Spatiotemporal variation characteristics and influencing factors of net nitrogen input from human activities:a case study in Xiangxi River Basin[J]. China Environmental Science, 2019,39(2):812-817. [37] Zhang W, Li H, Li Y. Spatio-temporal dynamics of nitrogen and phosphorus input budgets in a global hotspot of anthropogenic inputs[J]. Science of the Total Environment, 2019,656(15):1108-1120. [38] Zhang X, Zhang Y, Fath B D. Analysis of anthropogenic nitrogen and its influencing factors in Beijing[J]. Journal of Cleaner Production, 2020,244(1):1-12. [39] Ludemann C I, Gruere A, Heffer P, et al. Global data on fertilizer use by crop and by country[J]. Scientific Data, 2022,9(1):1-8. [40] 郭虎林,韩玉国,郭子繁.北京地区典型果园NANI解析与削减对策[J].应用与环境生物学报, 2020,26(2):386-393. Guo H L, Han Y G, Guo Z F. Analysis and reduction of net anthropogenic nitrogen inputs (NANI) in a typical orchard in Beijing[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(2):386-393. [41] 秦越.中国居民肉类消费特征与趋势研究[D].北京:中国农业科学院, 2022. Qin Y. Study on the characteristics and trend of Chinese residents'meat consumption[D]. Beijing:Chinese Academy of Agricultural Sciences, 2022.