Effect of various biofilm formation methods on biofilm characteristic and low strength biochemical effluent treatment
HU Xiao-bing1,2, CHEN Hong-wei1, NIE Yong1,2, LI Jing-jing1, GU Xian-jing1, SU Jun-wen1, HU Jiang-nan1, WANG Zhen-zhen1
1. College of Architectural Engineering, Anhui University of Technology, Ma'anshan 243002, China; 2. Engineering Research Center of Water Purification and Utilization Technology Based on Biofilm Process, Ministry of Education, Ma'anshan 243032, China
Abstract:In order to explore the most suitable method of biofilm formation for the advanced biological treatment of low strength biochemical effluent. We compared four different biofilm formation methods including chitosan-addition method, iron-ion-addition method, activated-sludge-inoculation, and natural-biofilm-formation method to evaluate the biofilm characteristics, i.e. the mixed liquor suspended sludge (MLSS), and the extracellular polymeric substances (EPS) and thus the wastewater treatment performance. The results showed that, compared with the other methods, the chitosan-addition method favored the rapid increase of biofilm biomass and EPS during the biofilm formation period, with the maximum achieved contents respectively of (9.26 ±3.30) g/cm3and (42.51 ±33.49) mg/(gSS). However, the biofilm activity value f and pollutant removal efficiency were not satisfactory by using chitosan-addition method. Moreover, stable biofilm characteristics, high activity and excellent pollutant removal efficiency were achieved by using iron-ion-addition method. The removal rates of CODCr, NH4+-N and TP were rapidly stabilized at (66.13 ±2.30)%, (92.03 ±7.72)% and (62.75 ±4.41)%, respectively. Furthermore, by using activated-sludge-inoculation method, the biofilm biomass, the average contents of EPS and pollutants removal efficiency were lower than with the chitosan-addition and iron-ion-addition methods. Finally, by using natural-biofilm-formation method the pollutant removal efficiency was at lower level in early stage, and to reach stability needs a long time. Except for TP, CODCr and NH4+-N removal rates in the later stage of biofilm formation, there was no obvious difference between natural-biofilm-formation method, the chitosan-addition method and theactivated-sludge-inoculation method. Overall, although with the iron-ion-addition method, the biofilm biomass and the EPS content were a little lower than those by using chitosan-addition method, it was the most appropriate method for advanced treatment of low strength biochemical effluent because of high biofilm activity and pollutant removal efficiency.
胡小兵, 陈红伟, 聂勇, 李晶晶, 顾娴静, 苏浚文, 胡江楠, 王振振. 挂膜方法对生物膜特性及生化尾水深度处理的影响[J]. 中国环境科学, 2021, 41(12): 5710-5717.
HU Xiao-bing, CHEN Hong-wei, NIE Yong, LI Jing-jing, GU Xian-jing, SU Jun-wen, HU Jiang-nan, WANG Zhen-zhen. Effect of various biofilm formation methods on biofilm characteristic and low strength biochemical effluent treatment. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(12): 5710-5717.
Kermani M, Bina B, Movahedian H, et al. Biological phosphorus and nitrogen removal from wastewater using moving bed biofilm process[J]. Iranian Journal of Biotechnology, 2009,7(1):19-27.
[2]
张兴文,杨凤林,马建勇,等.MBBR处理低浓度污水的工程应用[J]. 环境工程, 2002,20(5):12-15,2. Zhang X W, Yang F L, Ma J Y, et al. Application of full-scale MBBR in treating low concentration wastewater[J]. Environmental Engineering, 2002,20(5):12-15,2.
[3]
周稳.尾水深度处理中PVA凝胶填料增强脱氮效果的研究[D]. 苏州:苏州大学, 2019. Zhou W. Study on enhancing denitrification effect of PVA gels in deep treatment of WWTP effluent[D]. Suzhou: Soochow University, 2019.
[4]
Abou-Elela S I, Abou Taleb E, Ali M, et al. Environmental management of pharmaceutical wastes: experience from Egypt[J]. International Ground Water Technology, 2012,2(2):134-144.
[5]
王玉磊.基于生物接触氧化法处理低污染水的技术研究[D]. 南京:南京大学, 2014. Wang Y L. A study of low-polluted water treatment with biological contact oxidation technology[D]. Nanjing: Nanjing University, 2014.
[6]
朱荣芳.不同挂膜空间尺度载体生物膜特性研究[D]. 马鞍山:安徽工业大学, 2017. Zhu R F. Study on biofilm characteristics of carriers with different space scale for biofilm formation[D]. Maanshan: Anhui University of Technology, 2017.
[7]
Fang F, Lu W T, Shan Q, et al. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats[J]. Carbohydrate Polymers, 2014,106(1):1-6.
[8]
邹海明,王艳,李飞跃,等.2种生物膜挂膜方法对比分析及其影响因素研究[J]. 工业水处理, 2015,35(10):62-65. Zhou H M, Wang Y, Li F Y, et al. Comparative analysis on two kinds of bio-film forming methods and its influential factors[J]. Industrial Water Treatment, 2015,35(10):62-65.
[9]
Miao Z, Cong W, Peng Y, et al. Organic substrate transformation and sludge characteristics in the integrated anaerobic anoxic oxic- biological contact oxidation (A2O-BCO) system treating wastewater with low carbon/nitrogen ratio[J]. Chemical Engineering Journal, 2016,283:47-57.
[10]
陈洪斌,梅翔,高廷耀,等.受污染源水生物预处理挂膜过程研究[J]. 水处理技术, 2001,27(4):196-199. Cheng H B, Mei X, Gao T Y, et al. Study on biofilm colonization of polluted raw water bio-pretreatment[J]. Technology of Water Treatment, 2001,27(4):196-199.
[11]
王建华,陈永志,彭永臻.硝化型曝气生物滤池的挂膜与启动[J]. 环境工程学报, 2010,4(10):2199-2203. Wang J H, Chen Y Z, Peng Y Z. Biofilm formation and startup of nitrification biological aeration filter[J]. Chinese Journal of Environmental Engineering, 2010,4(10):2199-2203.
[12]
黄理辉,马鲁铭,张波,等.铁离子促进悬浮载体挂膜的机理研究[J]. 中国给水排水, 2007,23(9):106-108. Huang L H, Ma L M, Zhang B, et al. Study on promotion mechanism of Fe ion for biofilm formation on suspended carrier[J]. China Water & Wastewater, 2007,23(9):106-108.
[13]
Torres K, álvarez-Hornos F J, San-Valero P, et al. Granulation and microbial community dynamics in the chitosan-supplemented anaerobic treatment of wastewater polluted with organic solvents[J]. Water Research, 2018,130:376-387.
[14]
Goncalves J J, Govind R. Enhanced biofiltration using cell attachment promotors[J]. Environmental Science & Technology, 2009,43(4): 1049.
[15]
Li Y, Yang S F, Zhang J J, et al. Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment[J]. Water Science & Technology, 2014,70(3):548-554.
[16]
宋协法,柳瑶,黄志涛.不同滤料及挂膜方式对养殖污水处理效果的研究[J]. 环境工程学报, 2010,4(8):1687-1691. Song X F, Liu Y, Huang Z T. Study on effect of different filter media and membrane-forming methods on treatment of aquaculture wastewater[J]. Chinese Journal of Environmental Engineering, 2010, 4(8):1687-1691.
[17]
傅金祥,许海良,陈正清.不同原水条件下曝气生物滤池的挂膜启动[J]. 中国给水排水, 2006,22(11): 90-92. Fu J X, Xu H L, Chen Z Q. Research on start-up of biological aerated filter with different raw water[J]. China Water & Wastewater, 2006, 22(11): 90-92.
[18]
Guo J, Fang M, Chang C C, et al. Start-up of a two-stage bioaugmented anoxic-oxic (A/O) biofilm process treating petrochemical wastewater under different DO concentrations[J]. Bioresource Technology, 2009,99(14):3483-3488.
[19]
徐京,朱亮,丁炜,等.挂膜方式对模拟河道生物反应器启动与稳态运行的影响[J]. 中国环境科学, 2010,30(8):1091-1096. Xu J, Zhu L, Ding W, et al. Effects of biofilm growing methods on start-up and performances for simulated river bioreactor[J]. China Environmental Science, 2010,30(8):1091-1096.
[20]
唐文锋,孙丰英,何晓文.曝气生物滤池不同挂膜方法预处理微污染水源水研究[J]. 水处理技术, 2011,37(11):80-83. Tang W F, Sun F Y, He X W. Experimental study on different biofilm formation methods in biological aerated filter used for pretreatment of micro-polluted water source[J]. Technology of Water Treatment, 2011,37(11):80-83.
[21]
韩剑宏,刘燕,朱浩君,等.反硝化生物滤池的自然挂膜启动研究[J]. 中国给水排水, 2015,31(3):1-4. Han J H, Liu Y, Zhu H J, et al. Biofilm formation and startup in denitrification biofilter[J]. China Water & Wastewater, 2015,31(3): 1-4.
[22]
朱兆亮,曹相生,孟雪征,等.上向流好气滤池冬季挂膜启动及运行参数探讨[J]. 环境工程学报, 2009,3(2):215-218. Zhu Z L, Cao X S, Meng X Z, et al. Probe into start-up methods and optimum running parameters of upflow aerobic filters in winter[J]. Chinese Journal of Environmental Engineering, 2009,3(2):215-218.
[23]
孙璨.促挂膜剂作用下好氧污泥颗粒化及其处理含酚废水的研究[D]. 徐州:中国矿业大学, 2017. Sun C. Study on aerobic sludge granulation with facilitated-biofilm reagents and treatment of phenol wastewater[D]. Xuzhou: China University of Mining and Technology, 2017.
[24]
陈凯.铁锰离子对生物膜及其胞外聚合物的作用规律研究[D]. 昆明:昆明理工大学, 2016. Chen K. Effects of Fe(Ⅲ)/Mn(Ⅱ) on biofilm and its extracellular polymeric substances (EPS)[D]. Kunming: Kunming University of Science and Technology, 2016.
[25]
国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002. State Environmental Protection Administration. Water and waste water monitoring and analysis method (fourth edition)[M]. Beijing: China Environmental Science Press, 2002.
[26]
Liu H, Fang H. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002,95(3):249-256.
[27]
沈仲根,张丽丽,陈建孟.有机负荷影响好氧颗粒污泥特性的研究[J]. 环境污染与防治, 2008,30(8):69-72. Shen Z G, Zhang L L, Chen J M. Effect of organic loading rate on characteristics of aerobic granule[J]. Environmental Pollution & Control, 2008,30(8):69-72.
[28]
廖榆敏,汤兵,陈秋雯.移动床生物反应器启动特性研究进展[J]. 水处理技术, 2011,37(2):5-8,22. Liao Y M, Tang B, Chen Q W. Moving-bed biofilm reactor start-up characteristics[J]. Technology of Water Treatment, 2011,37(2):5-8,22.
[29]
魏现航.壳聚糖在印染废水处理中的应用[D]. 青岛:青岛大学, 2010. Wei X H. Application of chitosan in dyeing wastewater treatment[D]. Qingdao: Qingdao University, 2010.
[30]
Li W W, Zhang H L, Sheng G P, et al. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process[J]. Water Research, 2015,86:85-95.
[31]
郭俊元,文小英,贾晓娟,等.磁性壳聚糖改善污泥脱水性能的研究[J]. 中国环境科学, 2019,39(7):2944-2952. Guo J Y, Wen X Y, Jia X J, et al. Preparation of magnetic chitosan and improvement of dewatering performance of sludge[J]. China Environmental Science, 2019,39(7):2944-2952.
[32]
Li J. Effects of Fe(III) on floc characteristics of activated sludge[J]. Journal of Chemical Technology &Biotechnology, 2005,80(3):313- 319.
[33]
杨涛,张静,何帅,等.投加FeSO4对序批式生物膜反应器中DHA、EPS和处理效果的影响[J]. 环境科学学报, 2016,36(8): 2838-2843. Yang T, Zhang J, He S, et al. Effects of ferrous sulfate (FeSO4) on dehydrogenase activity (DHA), amount of extracellular polymeric substances (EPS) and the treatment efficiency in a sequencing batch biofilm reactor (SBBR)[J]. Acta Scientiae Circumstantiae, 2016, 36(8):2838-2843.
[34]
Ren J H, Cheng W, Wan T, et al. Characteristics of the extracellular polymeric substance composition in an up-flow biological aerated filter reactor: The impacts of different aeration rates and filter medium heights[J]. Bioresource Technology, 2019,289:121664-121664.
[35]
Xiang L P, Jing L, Zhang D Y, et al. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: A fluorescence quenching study[J]. Journal of Colloid and Interface Science, 2010,345(2):442-447.
[36]
虞艳云.胞外聚合物在含铁矿物同微生物界面过程中的作用研究[D]. 合肥:合肥工业大学, 2014. Yu Y Y. Effect of extracellular polymeric substances on the interface process between microbial and iron minerals[D]. Hefei: Hefei University of Technology, 2014.
[37]
豆宁龙.不同价态铁对生化处理强化作用研究[D]. 兰州:兰州交通大学, 2014. Dou N L. Experimental study on different valence state of iron intensified biochemical reactions[D]. Lanzhou: Lanzhou Jiaotong University, 2014.
[38]
王秀蘅,任南琪,王爱杰,等.铁锰离子对硝化反应的影响效应研究[J]. 哈尔滨工业大学学报, 2003,35(1):122-125. Wang X H, Ren N Q, Wang A J, et al. Effect of ferrous and manganese ion on nitrification[J]. Journal of Harbin Institute of Technology, 2003,35(1):122-125.
[39]
李浩,闫玉洁,谢慧君,等.Fe3+对同步硝化反硝化过程氮元素迁移转化及N2O释放的影响[J]. 环境科学, 2015,36(4):1392-1398. Li H, Yan Y J, Xie H J, et al. Effect of Ferric Iron on Nitrogen Immigration and Transformation and Nitrous Oxide Emission During Simultaneous Nitrification Denitrification Process[J]. Environmental Science, 2015,36(4):1392-1398.
[40]
王羽华,李勇,潘丹华,等.泥龄对强化生物除磷系统中聚磷菌生化代谢特性的影响[J]. 水处理技术, 2014,40(7):80-84. Wang Y H, Li Y, Pan D H, et al. Effects of sludge age on the characters of biochemical metabolism for the phosphate accumulating organisms in enhanced biological phosphate removal system[J]. Technology of Water Treatment, 2014,40(7):80-84.
[41]
仲小敏,堵国成,陈坚.一株好氧除磷菌P10的筛选及除磷条件的优化研究[J]. 食品与生物技术学报, 2013,32(7):773-777. Zhong X M, Du G C, Chen J. Screening of an Aerobic Phosphorus Removal Bacteria P10and Condition Optimization of Phosphorus Removal[J]. Journal of Food Science and Biotechnology, 2013,32(7): 773-777.
[42]
任杰,高博强,唐宇农,等.FeCl3与接枝型淀粉改性絮凝剂联用“化学沉淀-絮凝”工艺除磷去浊性能[J]. 环境化学, 2020,39(11): 2988-2998. Ren J, Gao B Q, Tang Y N, et al. Removal of phosphorus and turbidity by a chemical sedimentation-flocculation process using FeCl3 combined with a graft starch-based flocculant[J]. Environmental Chemistry, 2020,39(11):2988-2998.
[43]
韩芸,许松,董涛,等.碳源类型、温度及电子受体对生物除磷的影响[J]. 环境科学, 2015,36(2):590-596. Han Y, Xu S, Dong T, et al. Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal[J]. Environmental Science, 2015,36(2):590-596.