Scenario simulation and driving factors of ecosystem carbon storage in the Loess Plateau: A study based on the PLUS-InVEST-Geodector model
LIU Kang1, ZHANG Han1, ZHANG Dao-jun2, ZHENG Wei-wei1, ZHANG Chao-zheng1
1. College of Economics and Management, Northwest A &F University, Yangling 712100, China; 2. School of Public Administration, China University of Geosciences (Wuhan), Wuhan 430074, China
Abstract:We used the PLUS model to predict the land use pattern under different development scenarios in 2030 in the Loess Plateau, an important ecological barrier in China, and applied the InVEST-Geodector model to analyze the spatiotemporal changes and driving factors in ecosystem carbon storage from 2020 to 2030. The findings were as follows: (1) The area of cropland will decrease under the natural development and ecological protection scenarios; the area of grassland decreases significantly under the cropland protection scenario, and forests and waters are effectively protected under all three scenarios. (2) The ecosystem carbon storage under the natural development, ecological protection, and cropland protection scenarios is 4.922, 5.021, and 4.922Pg, respectively. Compared with those in 2020, carbon storage will increase by 8.07, 37.22, and 8.07Tg, respectively. Carbon storage has obvious spatial heterogeneity, with high carbon density in the northern Qinling Mountains, Taihang Mountains, and Lvliang Mountains and low carbon density in Erdos City and its surrounding areas. Changes in carbon storage are closely related to the changes in the number of land classes and conversion of land use types. In conclusion, the ecological protection scenario is more in line with the future development needs of the study area. (3) The core determinants of ecosystem carbon storage are slope and precipitation, and the dominating combinations of factors driving regional differences and changes in carbon storage are the interactions of slope, soil type, or average annual temperature content with other variables.
刘康, 张寒, 张道军, 郑伟伟, 张超正. 黄土高原生态系统碳储量情景模拟与驱动因素——基于PLUS–InVEST-Geodector模型的研究[J]. 中国环境科学, 2025, 45(4): 2159-2170.
LIU Kang, ZHANG Han, ZHANG Dao-jun, ZHENG Wei-wei, ZHANG Chao-zheng. Scenario simulation and driving factors of ecosystem carbon storage in the Loess Plateau: A study based on the PLUS-InVEST-Geodector model. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(4): 2159-2170.
[1] 方精云,于贵瑞,任小波,等.中国陆地生态系统固碳效应--中国科学院战略性先导科技专项"应对气候变化的碳收支认证及相关问题"之生态系统固碳任务群研究进展[J].中国科学院院刊, 2015, 30(6):848-857,875. Fang J Y, Yu G R, Ren X B, et al. Carbon sequestration in China's terrestrial ecosystems under climate change:progress on ecosystem carbon sequestration from the CAS strategic priority research program[J]. Bulletin of Chinese Academy of Sciences, 2015,30(6):848-857,875. [2] Fang J Y, Kato T, Guo Z D, et al. Evidence for environmentally enhanced forest growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(26):9527-9532. [3] 高扬,何念鹏,汪亚峰.生态系统固碳特征及其研究进展[J].自然资源学报, 2013,28(7):1264-1274. Gao Y, He N P, Wang Y F. Characteristics of ecosystem carbon sequestration by ecosystem and progress in its research[J]. Journal of Natural Resources, 2013,28(7):1264-1274. [4] 胡欢,章锦河,熊杰,等.河北省碳源碳汇测算及碳减排压力分析[J].地理与地理信息科学, 2016,32(3):61-67. Hu H, Zhang J H, Xiong J, et al. Carbon emission estimation and reduction pressure analysis in Hebei Province[J]. Geography and Geo-Information Science, 2016,32(3):61-67. [5] 田多松,傅碧天,吕永鹏,等.基于SD和CLUE-S模型的区域土地利用变化对土壤有机碳储量影响研究[J].长江流域资源与环境, 2016, 25(4):613-620. Tian D S, Fu B T, Lv Y P, et al. Effect of regional land-use change on soil organic carbon storage based on SD and CLUE-S model[J]. Resources and Environment in the Yangtze Basin, 2016,25(4):613-620. [6] 宋永永,薛东前,马蓓蓓,等.黄土高原城镇化过程及其生态环境响应格局[J].经济地理, 2020,40(6):174-184. Song Y Y, Xue D Q, Ma B B, et al. Urbanization process and its ecological response pattern on the Loess Plateau[J]. Economic Geography, 2020,40(6):174-184. [7] 傅伯杰.黄土高原土地利用变化的生态环境效应[J].科学通报, 2022,67(32):3769-3779,3768. Fu B J. Ecological and environmental effects of land-use changes in the Loess Plateau of China[J]. Science Bulletin, 2022,67(32):3769-3779,3768. [8] Halmy M W A, Gessler P E, Hicke J A, et al. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA[J]. Applied Geography, 2015,63:101-112. [9] Xu Q L, Wang Q, Liu J, et al. Simulation of land-use changes using the partitioned ANN-CA model and considering the influence of land-use change frequency[J]. ISPRS International Journal of Geo-Information, 2021,10(5):346. [10] Guan D J, Zhao Z L, Tan J. Dynamic simulation of land use change based on Logistic-CA-Markov and WLC-CA-Markov models:A case study in three gorges reservoir area of Chongqing, China[J]. Environmental Science and Pollution Research, 2019,26(20):20669-20688. [11] Huang D Q, Huang J, Liu T. Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries[J]. Land Use Policy, 2019,82:422-435. [12] Mei Z H, Wu H, Li S Y. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling:A case study in Zengcheng District, Guangzhou, China[J]. Frontiers of Earth Science, 2018,12(2):299-310. [13] 谢莹,匡鸿海,吴晶晶,等.基于CLUE-S模型的重庆市渝北区土地利用变化动态模拟[J].长江流域资源与环境, 2016,25(11):1729-1737. Xie Y, Kuang H H, Wu J J, et al. Dynamic simulation of land use change in Yubei District of Chongqing based on CLUE-S model[J]. Resources and Environment in the Yangtze Basin, 2016,25(11):1729-1737. [14] 曹帅,金晓斌,杨绪红,等.耦合MOP与GeoSOS-FLUS模型的县级土地利用结构与布局复合优化[J].自然资源学报, 2019,34(6):1171-1185. Cao S, Jin X B, Yang X H, et al. Coupled MOP and GeoSOS-FLUS models research on optimization of land use structure and layout in Jintan district[J]. Journal of Natural Resources, 2019,34(6):1171-1185. [15] Liang X, Liu X P, Li X, et al. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method[J]. Landscape and Urban Planning, 2018,177:47-63. [16] Liang X, Guan Q F, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model:A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021,85:101569. [17] 马新萍,李晶,余玉洋,等.秦岭山地碳中和空间服务范围及其模拟预测[J].生态学报, 2022,42(23):9431-9441. Ma X P, Li J, Yu Y Y, et al. Spatial service scope and simulation prediction of carbon neutralization in Qinling Mountains[J]. Acta Ecologica Sinica, 2022,42(23):9431-9441. [18] 张考,黄春华,王志远,等.基于DTTD-MCR-PLUS模型的三生空间格局优化--以长沙市为例[J].生态学报, 2022,42(24):9957-9970. Zhang K, Huang C H, Wang Z Y, et al. Optimization of"production-living-ecological" spaces based on DTTD-MCR-PLUS model:Taking Changsha City as an example[J]. Acta Ecologica Sinica, 2022,42(24):9957-9970. [19] 蒋小芳,段翰晨,廖杰,等.基于PLUS-SD耦合模型的黑河流域中游甘临高地区土地利用研究[J].干旱区研究, 2022,39(4):1246-1258. Jiang X F, Duan H C, Liao J, et al. Land use in the Gan-Lin-Gao region of middle reaches of Heihe River Basin based on a PLUS-SD coupling model[J]. Arid Zone Research, 2022,39(4):1246-1258. [20] 刘洋,张军,周冬梅,等.基于InVEST模型的疏勒河流域碳储量时空变化研究[J].生态学报, 2021,41(10):4052-4065. Liu Y, Zhang J, Zhou D M, et al. Temporal and spatial variation of carbon storage in Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica, 2021,41(10):4052-4065. [21] 刘冠,李国庆,李洁,等.基于InVEST模型的1999-2016年麻塔流域碳储量变化及空间格局研究[J].干旱区研究, 2021,38(1):267-274. Liu G, Li G Q, Li J, et al. Study on change in carbon storage and its spatial pattern in Mata Watershed from 1999 to 2016 based on InVEST model[J]. Arid Zone Research, 2021,38(1):267-274. [22] Mendoza-Ponce A, Corona-Núñez R, Kraxner F, et al. Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico[J]. Global Environmental Change, 2018,53:12-23. [23] 朱文博,张静静,崔耀平,等.基于土地利用变化情景的生态系统碳储量评估--以太行山淇河流域为例[J].地理学报, 2019,74(3):446-459. Zhu W B, Zhang J J, Cui Y P, et al. Assessment of territorial ecosystem carbon storage based on land use change scenario:A case study in Qihe River Basin[J]. Acta Geographica Sinica, 2019,74(3):446-459. [24] 张平平,李艳红,殷浩然,等.中国南北过渡带生态系统碳储量时空变化及动态模拟[J].自然资源学报, 2022,37(5):1183-1197. Zhang P P, Li Y H, Yin H R, et al. Spatio-temporal variation and dynamic simulation of ecosystem carbon storage in the north-south transitional zone of China[J]. Journal of Natural Resources, 2022, 37(5):1183-1197. [25] 张美琪,陈波,赵敏.贵州省湿地碳储量与碳中和潜力分析[J].地质科技通报, 2023,42(2):315-326. Zhang M Q, Chen B, Zhao M. Analysis of the carbon stock and carbon neutral potential of wetlands in Guizhou Province[J]. Bulletin of Geological Science and Technology, 2023,42(2):315-326. [26] Lu F, Hu H F, Sun W J, et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(16):4039-4044. [27] Dangulla M, Abd Manaf L, Ramli M F, et al. Exploring urban tree diversity and carbon stocks in Zaria Metropolis, North Western Nigeria[J]. Applied Geography, 2021,127:102385. [28] Lipatov D N, Shcheglov A I, Manakhov D V, et al. Spatial variation of organic carbon stocks in peat soils and gleyzems in the Northeast of Sakhalin Island[J]. Eurasian Soil Science, 2021,54(2):226-237. [29] 张爽,高启晨,张戎,等.基于PLUS-InVEST模型碳储量时空演变及驱动因素分析--以纳帕海流域为例[J].中国环境科学, 2024,44(9):5192-5201. Zhang S, Gao Q C, Zhang R, et al. Evaluating the changes and driving factors of carbon storage using the PLUS-InVEST Model:A case study of Napa Sea Basin[J]. China Environmental Science, 2024, 44(9):5192-5201. [30] 樊杰.中国主体功能区划方案[J].地理学报, 2015,70(2):186-201. Fan J. Draft of major function oriented zoning of China[J]. Acta Geographica Sinica, 2015,70(2):186-201. [31] 张琨,吕一河,傅伯杰,等.黄土高原植被覆盖变化对生态系统服务影响及其阈值[J].地理学报, 2020,75(5):949-960. Zhang K, Lv Y H, Fu B J, et al. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau[J]. Acta Geographica Sinica, 2020,75(5):949-960. [32] 卿苗,赵军,冯超,等.1980~2030年石羊河流域生态系统碳储存服务对土地利用变化的响应[J].生态学报, 2022,42(23):9525-9536. Qing M, Zhao J, Feng C, et al. Response of ecosystem carbon storage service to land-use change in Shiyang River Basin from 1980 to 2030[J]. Acta Ecologica Sinica, 2022,42(23):9525-9536. [33] Wang K B, Deng L, Ren Z P, et al. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China[J]. Journal of Arid Land, 2016,8(2):207-220. [34] 徐丽,何念鹏,于贵瑞.2010s中国陆地生态系统碳密度数据集[J].中国科学数据(中英文网络版), 2019,4(1):90-96. Xu Li, He N P, Yu G R. A dataset of carbon density in Chinese terrestrial ecosystems (2010s)[J]. China Scientific Data, 2019,4(1):90-96. [35] 李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学:地球科学, 2003,33(1):72-80. Li K R, Wang S Q, Cao M K. Vegetation and soil carbon storage in China[J]. Scientia Sinica (Terrae), 2003,33(1):72-80. [36] 黄玫,季劲钧,曹明奎,等.中国区域植被地上与地下生物量模拟[J].生态学报, 2006,26(12):4156-4163. Huang M, Ji J J, Cao M K, et al. Modeling study of vegetation shoot and root biomass in China[J]. Acta Ecologica Sinica, 2006,26(12):4156-4163. [37] 朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报, 2004,28(4):491-498. Piao S L, Fang J Y, He J S, et al. Spatial distribution of grassland biomass in China[J]. Chinese Journal of Plant Ecology, 2004,28(4):491-498. [38] 方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报, 1996,16(5):497-508. Fang J Y, Liu G H, Xu S L. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 1996,16(5):497-508. [39] 揣小伟,黄贤金,郑泽庆,等.江苏省土地利用变化对陆地生态系统碳储量的影响[J].资源科学, 2011,33(10):1932-1939. Chuai X W, Huang X J, Zheng Z Q, et al. Land use change and its influence on carbon storage of terrestrial ecosystems in Jiangsu Province[J]. Resource Science, 2011,33(10):1932-1939. [40] 陈光水,杨玉盛,谢锦升,等.中国森林的地下碳分配[J].生态学报, 2007,27(12):5148-5157. Chen G S, Yang Y S, Xie J S, et al. Total below ground carbon allocation in China's forests[J]. Acta Ecologica Sinica, 2007,27(12):5148-5157. [41] Alam S A, Starr M, Clark B J F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah:A regional carbon sequestration study[J]. Journal of Arid Environments, 2013,89:67-76. [42] 安彬,肖薇薇,张淑兰,等.1960~2017年黄土高原不同等级降水日数和强度时空变化特征[J].干旱区研究, 2021,38(3):714-723. An B, Xiao W W, Zhang S L, et al. Spatio-temporal characteristics of precipitation days and intensity with different grades in the Loess Plateau from 1961 to 2017[J]. Arid Zone Research, 2021,38(3):714-723. [43] 安彬,肖薇薇,张淑兰,等.1960~2017年黄土高原地表温度时空变化特征[J].干旱区地理, 2021,44(3):778-785. An B, Xiao W W, Zhang S L, et al. Spatial and temporal characteristics of surface temperature in the Loess Plateau from 1961 to 2017[J]. Arid Land Geography, 2021,44(3):778-785. [44] 张婕,刘玉洁,张二梅,等.中国县域耕地动态演变及其驱动机制[J].地理学报, 2023,78(9):2105-2127. Zhang J, Liu Y J, Zhang E M, et al. Dynamics and driving mechanisms of cultivated land at county level in China[J]. Acta Geographica Sinica, 2023,78(9):2105-2127. [45] 李文秀,燕振刚.基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J].干旱区研究, 2024,41(4):590-602. Li W X, Yan Z G. Analysis of spatiotemporal evolution of land use and its driving mechanism in the agro-pastoral ecotone of Gansu Province using Geodetector[J]. Arid Zone Research, 2024,41(4):590-602. [46] 张燕,师学义,唐倩.不同土地利用情景下汾河上游地区碳储量评估[J].生态学报, 2021,41(1):360-373. Zhang Y, Shi X Y, Tang Q. Carbon storage assessment in the upper reaches of the Fenhe River under different land use scenarios[J]. Acta Ecologica Sinica, 2021,41(1):360-373.