Effects of HPO42- and H2PO4- on the aggregation of montmorillonite-humic colloidal particles
XU Ying-de1, WANG Jing-kuan1, LI Shuang-yi1, GAO Xiao-dan1,2
1. College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China;
2. College of Resources and Environment, Southwest University, Chongqing 400715, China
In order to investigate the effect of interfacial behaviors of HPO42- and H2PO4- on soil colloids aggregation, the aggregation kinetics of montmorillonite and humic colloids were monitored using a dynamic light scattering instrument. Results showed that the colloids aggregation in the HPO42- and H2PO4- systems transformed from slow aggregation (linear growth) to fast aggregation (power function growth) with increasing ionic strength of the electrolytes. In addition, the aggregation was more sensitive to the changes in ionic strength in H2PO4- system. Significant differences of the growth of effective particle size, total average aggregation (TAA) rate, critical coagulation ionic strength (CCIS), and activation energy were observed in colloids aggregation in the HPO42- and H2PO4- systems. Compared with aggregation in HPO42- system, aggregation in H2PO4- system has a higher TAA rate, lower CCIS and lower activation energy, indicating that H2PO4- has a stronger effect on initiating colloid aggregation. Besides, the CCIS of HPO42- was 2.43 times as that of H2PO4-. The difference of activation energies between the two systems increased with decreasing ionic strength, which might be caused by the ionic non-classical polarization in the strong external electric field. The addition of humic colloids significantly increased the CCIS and activation energy in HPO42- system, but not in H2PO4- system. The Hofmeister effects of HPO42- and H2PO4- on colloids aggregation followed the order of 96% montmorillonite+4% humic colloid >> 99% montmorillonite+1% humic colloid > 100% montmorillonite. These results indicated that there are strong Hofmeister effects of HPO42- and H2PO4- on the aggregation of montmorillonite-humic colloids, and the Hofmeister effects were directly dependent on the electric field strength near the surface of the colloids.
徐英德, 汪景宽, 李双异, 高晓丹. HPO42-和H2PO4-对蒙脱石-胡敏酸胶体凝聚的影响[J]. 中国环境科学, 2019, 39(9): 3914-3924.
XU Ying-de, WANG Jing-kuan, LI Shuang-yi, GAO Xiao-dan. Effects of HPO42- and H2PO4- on the aggregation of montmorillonite-humic colloidal particles. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(9): 3914-3924.
Colombo C, Palumbo G, Angelico R, et al. Spontaneous aggregation of humic acid observed with AFM at different pH[J]. Chemosphere, 2015,138:821-828.
[2]
唐嘉,朱曦,刘秀婷,等.2:1和1:1型黏土矿物胶体凝聚中Hofmeister效应的比较研究[J]. 土壤学报, 2018,doi:10.11766/trxb201805140258. Tang J, Zhu X, Liu X, et al. Hofmeister effects of 2:1and 1:1clay minerals in agglomeration:A comparative study[J]. Acta Pedologica Sinica, 2018,doi:10.11766/trxb201805140258.
[3]
高晓丹,徐英德,张广才,等.Cu2+和Zn2+在土壤电场中的极化对黑土胶体凝聚的影响[J]. 农业环境科学学报, 2018,37(3):440-447. Gao X, Xu Y, Zhang G, et al. Effects of Cu2+ and Zn2+ polarization by electric fields on the colloid aggregation of black soil[J]. Journal of Agro-Environment Science, 2018,37(3):440-447.
[4]
周琴,姜军,徐仁扣.Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)在红壤胶体和非胶体颗粒上吸附的比较[J]. 土壤学报, 2018,55(1):131-138. Zhou Q, Jiang J, Xu R. Adsorption of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) on colloidal and non-colloidal particles in two red soils[J]. Acta Pedologica Sinica, 2018,55(1):131-138.
[5]
丁武泉,何家洪,刘新敏,等.有机质对三峡库区水体中土壤胶体颗粒凝聚影响机制研究[J]. 水土保持学报, 2017,31(4):166-171. Ding W, He J, Liu X, et al. Effect of organic matter on aggregation of soil collodial particles in water bodies of three gorge reservoir region[J]. Journal of Soil and Water Conservation, 2017,31(4):166-171.
[6]
唐颖,李航,朱华玲,等.SDBS/Na+对红壤胶体悬液稳定性的影响[J]. 环境科学, 2014,35(4):1540-1547. Tang Y, Li H, Zhu H, et al. Impact of SDBS/Na+ on red soil colloidal stability[J]. Environmental Science, 2014,35(4):1540-1547.
[7]
杨炜春,刘维屏,胡晓捷. Zeta电位法研究除草剂在土壤胶体中的吸附.中国环境科学, 2003,23(1):51-54. Yang W, Liu W, Hu X. Study on the adsorption of herbicide in soil colloids by Zeta potential measurements. China Environmental Science, 2003,23(1):51-54.
[8]
何振立,袁可能,朱祖祥.电解质种类和浓度影响磷酸根解吸的机理研究[J]. 土壤学报, 1992,29(1):26-33. He Z L, Yuan K N, Zhu Z X. Effect of ionic strength and cation on phosphate desorption[J]. Acta Pedologica Sinica, 1992,29(1):26-33.
[9]
康智明,张荣霞,叶玉珍,等.基于GIS的福建农田氮磷地表径流流失与污染风险评估[J]. 中国生态农业学报, 2018,26(12):1887-1897. Kang Z, Zhang R, Ye Y, et al. GIS-based pollution risk assessment of nitrogen and phosphorus loss in surface runoff in farmlands in Fujian Province[J]. Chinese Journal of Eco-Agriculture, 2018,26(12):1887-1897.
[10]
朱俊,蔡鹏,黄巧云,等.磷酸盐和低分子量有机酸盐对红壤胶体和矿物吸附DNA的影响[J]. 土壤学报, 2008,45(3):565-568. Zhu J, Cai P, Huang Q, et al. Effect of phosphate and low-molecular-weight organic ligands on DNA adsorption by red soil colloids and minerals[J]. Acta Pedologica Sinica, 2008,45(3):565-568.
[11]
申晋,郑刚,李孟超,等.用光子相关光谱法测量多分散颗粒系的颗粒粒度分布[J]. 光学仪器, 2003,25(4):3-6. Shen J, Zheng G, Li M, et al. Particle sizing in polydisperse system with Photon Correlation Spectroscopy[J]. Optical Instruments, 2003, 25(4):3-6.
[12]
Li S, Li Y, Huang X R, et al. Phosphate fertilizer enhancing soil erosion:effects and mechanisms in a variably charged soil[J]. Journal of Soils and Sediments, 2018,18:863-873.
[13]
傅强,郭霞,田锐,等.不同阴离子对负电荷胶体(蒙脱石)凝聚的影响[J]. 西南大学学报(自然科学版), 2016,38(4):1-7. Fu Q, Guo X, Tian R, et al. Effects of different anions on negatively charged colloidal aggregation of montmorillonite[J]. Journal of Southwest University (Natural Science Edition), 2016,38(4):1-7.
[14]
熊毅.土壤胶体[M]. 北京:科学出版社, 1985:7-31. Xiong Y. Soil colloid[M]. Beijing:Science Press, 1985:7-31.
[15]
Low P. The swelling of clay:Ⅱ. Montmorillonites[J]. Soil Science Society of America Journal, 1980,44(4):667-676.
[16]
Liu X, Li H, Li R. et al. Combined determination of surface properties of nano-colloidal particles through ion selective electrodes with potentiometer[J]. Analyst, 2013,138(4):1122-1129.
[17]
Kuwatsuka S, Watanabe A, Itoh K, et al. Comparison of two methods of preparation of humic and fulvic acids, IHSS method and NAGOYA method[J]. Soil Science and Plant Nutrition, 1992,38(1):23-30.
[18]
Gao X, Li S, Liu X, et al. The effects of NO3- and Cl- on negatively charged clay aggregation[J]. Soil and Tillage Research, 2019,186:242-248.
[19]
Jia M, Li H, Zhu H, et al. An approach for the critical coagulation concentration estimation of polydisperse colloidal suspensions of soil and humus[J]. Journal of Soils and Sediments, 2013,13(2):325-335.
[20]
Tian R, Yang G, Li H, et al. Activation energies of colloidal particle aggregation:towards a quantitative characterization of specific ion effects[J]. Physical Chemistry Chemical Physics, 2014,16(19):8828-8836.
[21]
高晓丹,李航,朱华玲,等.特定pH条件下Ca2+/Cu2+引发胡敏酸胶体凝聚的比较研究[J]. 土壤学报, 2012,49(4):698-707. Gao X, Li H, Zhu H, et al. Aggregation of humic colloidal particles as affected by electrolyte and pH[J]. Acta Pedologica Sinica, 2012, 49(4):698-707.
[22]
Rowe A. Probing hydration and the stability of protein solutions——a colloid science approach[J]. Biophysical Chemistry, 2001,93(2):93-101.
[23]
Derjaguin B. Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes[J]. Acta Physico-Chimica Sinica, 1941,14:633-662.
[24]
朱华玲,李兵,熊海灵,等.不同电解质体系下土壤胶体凝聚动力学的动态光散射研究[J]. 物理化学学报, 2009,25(6):1225-1231. Zhu H, Li B, Xiong H., et al. Dynamic light scattering study on the aggregation kinetics of soil colloidal particles in different electrolyte systems[J]. Acta Physico-Chimica Sinica, 2009,25(6):1225-1231.
[25]
Lin M, Lindsay H, Weitz D, et al. Universality in colloid aggregation[J]. Nature, 1989,339:360-362.
[26]
Liu X, Li H, Li R, et al. Strong non-classical induction forces in ion-surface interactions:General origin of Hofmeister effects[J]. Scientific reports, 2014,4:e5047.
[27]
Li H, Hou J, Liu X, et al. Combined determination of specific surface area and surface charge properties of charged particles from a single experiment[J]. Soil Science Society of America Journal, 2011, 75(6):2128-2135.
[28]
Hu F, Li S, Xu C, et al. Effect of soil particle interaction forces in a clay-rich soil on aggregate breakdown and particle aggregation[J]. European Journal of Soil Science, 2018,doi:10.1111/ejss.12740.
[29]
高晓丹.矿物/腐殖质凝聚的离子特异性效应[D]. 重庆:西南大学, 2014. Gao X. Specific ion effects on mineral and humus aggregation[D]. Chongqing:Southwest University, 2014.
[30]
李兵,李航,朱华玲,等.不同pH条件下黄壤胶体凝聚的动态光散射研究[J]. 土壤学报, 2013,50(1):92-98. Li B, Li H, Zhu H, et al. Dynamic light scattering of aggregation of colloids in yellow earth different in pH[J]. Acta Pedologica Sinica, 2013,50(1):92-98.