Numerical simulation of influence of air cooling tower on atmospheric environment temperature and humidity
CHEN Hou-jiang1, LIAO Chuan-hua1, WANG Yin-feng1, WANG Xiao-jun2,3
1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China;
2. State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China;
3. Research Center for Climate Change of Ministry of Water Resources, Nanjing 210029, China
An air cooling tower model was developed with FLUENT tosimulate the heat transfer between air cooling tower and ambient atmospheric environment under different outlet temperature, ambient temperature, and crosswind velocity. The results showed that both outlet temperature and ambient temperature have significant effects in the heat transfer process.When the outlet temperature rose to 328K, the air temperature near the air cooling tower rose by 6.22K, its relative humidity decreased from 47.7% to 31.78%, and the degree of air dryness increased; Meanwhile, the heat transfer effect was enhanced with the increase of the temperature difference between the ambient and the exhaust gas, e.g. the air dryness in winter was the highest, followed by spring and autumn, and the lowest in summer. In addition, the crosswind velocity showed a significant effect on the heat transfer area. When thecrosswind velocity was 7m/s, the heat exchange affected area can reach 11.17km, and the relative humidity of the air cooling tower was reduced from 47.7% to 39.47%.
陈厚江, 廖传华, 王银峰, 王小军. 空冷塔对大气环境温度湿度影响的数值模拟[J]. 中国环境科学, 2019, 39(12): 4959-4965.
CHEN Hou-jiang, LIAO Chuan-hua, WANG Yin-feng, WANG Xiao-jun. Numerical simulation of influence of air cooling tower on atmospheric environment temperature and humidity. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(12): 4959-4965.
丁尔谋.发电厂直接空冷技术的发展和研究[J]. 内蒙古石油化工, 2011,37(2):116-117. Ding E M. Development and research of direct air cooling technology in power plants[J]. Inner Mongolia Petrochemical Industry, 2011,37(2):116-117.
[2]
高凤娇,邹瑾,陈金敏.大型火电厂热排放对环境气温增高的贡献检测[J]. 生态环境学报, 2010,26(6):1409-1415. Gao F J, Zou J, Chen J M. Detection of the contribution of thermal emissions from large thermal power plants to the increase of ambient temperature[J]. Ecology and Environment Sciences, 2010,26(6):1409-1415.
[3]
张晓东,郑永刚,王清照.空冷塔内外流场的数值分析[J]. 热能动力工程, 2000,15(1):52-54. Zhang X D, Zheng Y G, Wang Q Z. Numerical analysis of flow fields inside and outside the air cooling tower[J]. Journal of Engineering for Thermal Energy and Power, 2000,15(1):52-54.
[4]
刘志云,王栋,林宗虎.侧向风对自然通风直接空冷塔性能影响的数值分析[J]. 动力工程, 2008,28(6):915-919. Liu Z Y, Wang D, Lin Z H. Numerical analysis of the influence of lateral wind on the performance of direct air cooling tower with natural ventilation[J]. Journal of Power Engineering, 2008,28(6):915-919.
[5]
郑冠军,王琦峰,王一伟.大型电厂2×1000MW机组间接空冷系统环境风影响分析[J]. 科学技术与工程, 2012,20(12):2780-2785. Zheng G J, Wang Q F, Wang Y W. Analysis of environmental wind impact of indirect air cooling system for 2×1000MW units in large power plants[J]. Science Technology and Engineering, 2012,20(12):2780-2785.
[6]
Zou Z, Guan Z Q, Hal G, et al. Solar enhanced natural draft dry cooling tower for geothermal power applications[J]. Solar Energy, 2012,86(9):2686-2694.
[7]
Xia Z Z, Chen C J, Wang R Z. Numerical simulation of a closed wet cooling tower with novel Design[J]. International Journal of Heat & Mass Transfer, 2011,54(11):2367-2374.
[8]
Valéry M. A physically based scheme for the urban energy budget in atmospheric models[J]. Boundary-Layer Meteorology, 2000,94:357-397.
[9]
田松峰,王先懂,刘静,等.SCAL型间接空冷塔夏季工况数值模拟[J]. 汽轮机技术, 2016,58(3):195-197,237. Tian S F, Wang X D, Liu J, et al. Numerical simulation of SCAL type indirect air cooling tower in summer[J]. Turbine Technology, 2016, 58(3):195-197,237.
[10]
杨璐.烟塔合一排放效果影响因素的数值模拟研究[D]. 郑州:郑州大学, 2018. Yang L. Numerical simulation of the influencing factors of the emission effect of the cooling water in place of chimney combining tower[D]. Zhengzhou:Zhengzhou University, 2018.
[11]
王炫,杜风雷.SACTI模型在核电厂大型自然通风冷却塔对局地环境影响预测评价中的应用[J]. 辐射防护, 2013,33(4):199-205. Wang X, Du F L. Application of SACTI model in the prediction and evaluation of local environmental impact of large natural ventilation cooling tower in nuclear power plant[J]. Radiation Protection, 2013, 33(4):199-205.
[12]
靳超然.空冷岛对局地环境影响的数值研究[D]. 保定:华北电力大学, 2015. Jin C R. Numerical study on the impact of aircooling islands on local environment[D]. Baoding:North China Electric Power University, 2015.
[13]
李非,路婷婷,吴正人,等.空冷岛对周围大气流场影响数值模拟[J]. 热力发电, 2016,45(11):82-87. Li F, Lu TT, Wu Z R, et al. Numerical simulation of the influence of air-cooled island on the surrounding large airflow field[J]. Thermal Power Generation, 2016,45(11):82-87.
[14]
John D, Anderson J R.计算流体力学入门[M]. 姚朝晖,周强译.北京:清华大学出版社, 2002. John D, Anderson J R. Introduction to computational fluid dynamics[M]. Yao Z H, Zhou Q. Beijing:Tsinghua University Press, 2002.
[15]
王乐,张云伟,顾兆林.动态风场及交通流量下街道峡谷内污染物扩散模拟[J]. 中国环境科学, 2012,32(12):2161-2167. Wang L, Zhang Y W, Gu Z L. Simulation of pollutant dispersion in street canyons under dynamic wind field and traffic flow[J]. China Environmental Science, 2012,32(12):2161-2167.
[16]
王博,栾海燕,吴晗,等.核电厂野外示踪试验的三维数值模拟研究[J]. 中国环境科学, 2016,36(10):2950-2956. Wang B, Luan H Y, Wu H, et al. Threedimensional numerical simulation of field tracer test in nuclear power plants[J]. China Environmental Science, 2016,36(10):2950-2956.
[17]
王炫,杜风雷,王德忠,等.核电厂大型自然通风冷却塔对气载流出物扩散的影响[J]. 中国环境科学, 2018,38(5):1695-1703. Wang X, Du F L, Wang D Z, et al. Effect of large natural ventilation cooling towers on the diffusion of airborne effluent in nuclear power plants[J]. China Environmental Science, 2018,38(5):1695-1703.
[18]
管国锋,赵汝溥.化工原理[M]. 第三版.北京:化学工业出版社, 2002. Guan G F, Zhao R P. Principles of chemical engineering[M]. Third Edition. Beijing:Chemical Industry Press, 2002.
[19]
赵荣义,范存养,薛殿华,等.空气调节[M]. 北京:中国建筑工业出版社, 1994. Zhao R Y, Fan C Y, Xue D H, et al. Air conditioning[M]. Beijing:China Building Industry Press, 1994.
[20]
李强.湿空气状态参数的互算[J]. 住宅产业, 2018,211(6):48-50. Li Q. Mutual calculation of wet air state parameters[J]. Residential Industry, 2018,211(6):48-50.
[21]
王婷,谷波,邱峰.湿空气饱和水蒸汽曲线计算模型的建立与分析[J]. 低温与超导, 2010,38(5):47-52. Wang T, Gu B, Qiu F. Establishment and analysis of calculation model for wet air saturation water vapor curve[J]. Cryogenics and Superconductivity, 2010,38(5):47-52.
[22]
刘平.湿空气参数在工业应用中的研究[J]. 当代化工研究, 2017,5:48-50. Liu P. Research on wet air parameters in industrial applications[J]. Contemporary Chemical Research, 2017,5:48-50.
[23]
章伯其,周斌.湿空气状态参数关系式的改进[J]. 暖通空调, 2005,35(6):131. Zhang B Q, Zhou B. Improvement of the relationship between wet air state parameters[J]. HV&AC, 2005,35(6):131.
[24]
贾力,方肇洪,钱兴华.高等传热学[M]. 北京:高等教育出版社, 2003. Jia L, Fang Z H, Qian X H. Higher heat transfer[M]. Beijing:Higher Education Press, 2003.
[25]
Tovondrainy N, Stéphane A, Zeghmati B, et al. Numerical study of heat transfer and flow characteristics of air jet in a semi-confined cavity[J]. Energy Procedia, 2017,139:682-688.
[26]
Zhang C, Guo Z L. Discrete unified gas kinetic scheme for multiscale heat transfer with arbitrary temperature difference[J]. International Journal of Heat and Mass Transfer, 2019,134:1127-1136.