The distribution and enrichment of Uranium in groundwater of Hailar Basin
ZHANG Hai-yang2, GAO Bai1,2, GE Qin2, HUA En-xiang2, HUANG Shao-hua2, YI Ling2, SHEN Wei2, LIN Cong-ye2
1. State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; 2. School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
Abstract:12 surface water samples and 67 groundwater samples were collected from the Hailar Basin. The distribution characteristics and occurrence patterns of uranium in groundwater of samples were analyzed using Durov diagrams, contour maps, uranium form calculation theory, as well as mathematical statistics. Results show that the Helhongde sag area of the Hailar Basin is mainly HCO3-Ca·Na type, the Wagang uplift, Wuerxun sag and Beier sag area are mainly Cl-Na type and HCO3-Na type, and the Bayanshan uplift area was mainly HCO3-Ca·Na type. Hongqi Ranch and Xinbaolige depression were mainly Cl-Na type. The distribution of uranium in the study area ranged from 17 to 425μg/L, with an average of 80μg/L and a standard deviation of 70μg/L, which may indicate a regional groundwater uranium pollution. UO2(CO3)34- and UO2(CO3)22- are the dominate forms of uranium in groundwater, which is consistent with the redox environment of Eh, indicating a favorable environment for uranium mineralization in groundwater in the southeast of Hulunbuir Lake. Uranium mineralization prefers HCO3-type uranium-containing groundwater where uranyl bicarbonate is dominant, and the uranyl carbonate complex should be the dominate form. The dissolution of uranium is related to the increase of HCO3-. Uranium in groundwater may have participated in the mixed leaching of carbonate rock and sulfate rock. UO2(CO3)34-, UO2(CO3)22-, U4O9and bituminous ore are in a saturated state, while the concentrations of total Fe and (Ca2++Mg2+) were low. Various water chemical indicators are indicative of uranium enrichment, so they can be regarded as references for potential uranium sources.
张海阳, 高柏, 葛勤, 华恩祥, 黄少华, 易玲, 沈威, 林聪业. 海拉尔盆地地下水铀的分布特征及富集规律[J]. 中国环境科学, 2021, 41(1): 223-231.
ZHANG Hai-yang, GAO Bai, GE Qin, HUA En-xiang, HUANG Shao-hua, YI Ling, SHEN Wei, LIN Cong-ye. The distribution and enrichment of Uranium in groundwater of Hailar Basin. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(1): 223-231.
马汉峰.内蒙古新巴尔虎右旗克鲁伦断陷地浸砂岩型铀矿成矿地球化学作用研究[D]. 北京:核工业北京地质研究院, 2004. Ma H. Research on geochemical process of sandstone type uranium metallogency in Kelulun Downfaulted Basin, Xinbaerhuyouqi, Inner Mongolia[D]. Beijing:Beijing Research Institute of Uranium Geology, 2004.
[2]
Riedel T, Kübeck C. Uranium in groundwater-a synopsis based on a large hydrogeochemical data set[J]. Water Research, 2018,129:29-38.
[3]
沈威,高柏,章艳红,等.临水河天然放射性核素调查及健康风险评价[J]. 科学技术与工程, 2019,(19):59. Shen W, Gao B, Zhang Y, et al. Natural radionuclide survey and health risk assessment in Linshui River[J]. Science, Technology and Engineering, 2019,(19):59.
[4]
张帆.海拉尔盆地构造特征与构造演化[D]. 吉林长春:吉林大学地球科学学院, 14r56, 2007. Zhang F. Structural characteristics and tectonic evolution of Hailaer Basin[D]. Changchun, Jilin:College of Earth Sciences, Jilin University, 14r56, 2007.
[5]
揭异新,袁月琴,王斌.海拉尔盆地乌尔逊-贝尔凹陷白垩系原油地球化学特征及油源对比[J]. 石油实验地质, 2007,29(1):82-87. Jie Y, Yuan Y, Wang B. Geochemical characteristics and oil source correlation of Cretaceous crude oil in Wuerxun-Beier Sag of Hailar Basin[J]. Petroleum Experimental Geology, 2007,29(1):82-87.
[6]
何忧,荣辉,黄琨,等.伊犁盆地地下水水文地球化学特征与铀成矿条件分析[J]. 安全与环境工程, 2019,(1):7-13,25. He Y, Rong H, Huang K, et al. Analysis of groundwater hydrogeochemical characteristics and uranium metallogenic conditions in Yili Basin[J]. Safety and Environmental Engineering, 2019,(1):713,25.
[7]
易玲,高柏,刘媛媛,等.铀矿区周边水体典型核素污染特征及风险评价[J]. 中国环境科学, 2019,39(12):5342-5351. Yi L, Gao B, Liu Y, et al. typical radionuclide pollution characteristics and risk assessment of water around uranium mine area[J]. China Environmental Science, 2019,39(12):5342-5351.
[8]
卫三元,郭华,刘红旭.海拉尔盆地砂岩型铀成矿水文地质条件分析[J]. 世界核地质科学, 2003,(3):3003. Wei S, Guo H, Liu H. Analysis of hydrogeological conditions of sandstone-type uranium mineralization in Hailar Basin[J]. World Science of Nuclear Geology, 2003,(3):3003.
[9]
钟延秋,徐庆霞,谷社峰.航空放射性测量资料在成矿远景预测中的应用-以海拉尔盆地砂岩型铀矿为例[J]. 地质与资源, 2010, 19(4):319-324. Zhong Y, Xu Q, Gu S. Application of aerial radioactivity measurement data in metallogenic prospect prediction-Taking sandstone-type uranium deposits in Hailar Basin as an example[J]. Geology and Resources, 2010,19(4):319-324.
[10]
马汉峰,罗毅,王明太,等.内蒙古克鲁伦断陷盆地可地浸砂岩型铀矿成矿条件分析[J]. 铀矿地质, 2006,22(2):83-89. Ma H, Luo Y, Wang M, et al. analysis of metallogenic conditions of in-situ leachable sandstone-type uranium deposits in Kelulun Fault Basin, Inner Mongolia[J]. Uranium Geology, 2006,22(2):83-89.
[11]
赵忠华.中国北东部中新生代盆地地浸砂岩型铀矿成矿条件及找矿方向[J]. 地质与资源, 2003,12(1):36-41,60. Zhao Z. Metallogenic conditions and prospecting direction of in-situ leaching sandstone-type uranium deposits in mesozoic and cenozoic basins in eastern China[J]. Geology and Resources, 2003,12(1):3641,60.
[12]
逄玮.吐哈盆地水文地球化学分带与铀矿化关系浅析[J]. 新疆地质, 1997,(3):261-268. Pei W. Analysis on the relationship between hydrogeochemical zoning and uranium mineralization in Turpan-Hami Basin[J]. Xinjiang Geology, 1997,(3):261-268.
[13]
刘庆,阳正勇,周文博,等.海拉尔盆地贝尔湖坳陷铀成矿地质条件分析[J]. 中国核学会2015年学术年会, 2015:127-131. Liu Q, Yang Z, Zhou W, et al. Analysis of uranium metallogenic geological conditions in Beierhu Depression, Hailar Basin[J]. Annual Conference of Chinese Nuclear Society, 2015:127-131.
[14]
王润红,刘红旭,郭华,等.查干诺尔盆地地下水中铀和伴生元素特征及其研究意义[J]. 世界核地质科学, 2009,26(2):3345-0. Wang R, Liu H, Guo H, et al. Characteristics and research significance of uranium and associated elements in groundwater of Chagannuoer Basin[J]. World Science of Nuclear Geology, 2009,26(2):3345-0.
[15]
丁鼎.海拉尔盆地地层水分析[J]. 中国新技术新产品, 2015, (7):169-169. Ding D. Analysis of Formation Water in Hailar Basin[J]. China New Technology and New Products, 2015,(7):169-169.
[16]
韩知明,贾克力,孙标,等.呼伦湖流域地表水与地下水离子组成特征及来源分析[J]. 生态环境学报, 2018,27(4):744-751. Han Z, Jia K, Sun B, et al. Ion composition and source analysis of surface water and groundwater in Hulun Lake Basin[J]. Acta Ecologica Sinica, 2018,27(4):744-751.
[17]
韩知明.呼伦湖流域水体氢氧同位素与水化学特征研究[D]. 内蒙古农业大学, 2018. Han Z. Study on hydrogen and oxygen isotopes and hydrochemical characteristics of water in Hulun Lake Basin[D]. Inner Mongolia Agricultural University, 2018.
[18]
Webster J G, Brown K L, Vincent W F. Geochemical processes affecting meltwater chemistry and the formation of saline ponds in the Victoria Valley and Bull Pass region, Antarctica[J]. Hydrobiologia, 1994,281(3):171-186.
[19]
Marandi A, Shand P. Groundwater chemistry and the Gibbs Diagram[J]. Applied Geochemistry, 2018,97:209-212.
[20]
Zhang F, Jin Z, Yu J, et al. Hydrogeochemical processes between surface and groundwaters on the northeastern Chinese Loess Plateau:implications for water chemistry and environmental evolutions in semi-arid regions[J]. Journal of Geochemical Exploration, 2015,159:115-128.
[21]
吴用,史小红,赵胜男,等.内蒙古高原3大典型湖泊水化学特征及其控制因素分析[J]. 生态环境学报, 2015,24(7):1202-1208. Wu Y, Shi X, Zhao S, et al. Analysis of hydrochemical characteristics and controlling factors of three typical lakes in Inner Mongolia Plateau[J]. Acta Ecologica Sinica, 2015,24(7):1202-1208.
[22]
梁丽娥,李畅游,史小红.2015年8月呼伦湖水化学特征[J]. 湿地科学, 2016,14(6):936. Liang Li, Li C, Shi X. Hydrochemical characteristics of Hulun Lake in August 2015[J]. Wetland Science, 2016,14(6):936.
[23]
史维浚,孙占学.应用水文地球化学原理[M]. 北京:原子能出版社, 2005:77-78. Shi W, Sun Z. Applied hydrogeochemistry principle[M]. Beijing:Atomic Energy Press, 2005:77-78.
[24]
Edition F. Guidelines for drinking-water quality[J]. WHO Chronicle, 2011,38(4):104-8.
[25]
Li P, Wu J, Qian H. Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors:a case study in and around Hua County, China[J]. Arabian Journal of Geosciences, 2016,9(1):15.
[26]
李会亚,冯起,陈丽娟,等.民勤绿洲灌区地下水水化学特征及其演化驱动机理[J]. 干旱区研究, 2017,34(4):733-740. Li H, Feng Q, Chen L, et al. Groundwater hydrochemical characteristics and evolution driving mechanism in Minqin Oasis Irrigation Area[J]. Arid Area Research, 2017,34(4):733-740.
[27]
成建军,郭丽超,李书海.伊犁盆地南缘铀水文地球化学特征及地下水铀成矿作用[J]. 现代矿业, 2017,33(3):73-76. Cheng J, Guo L, Li S. hydrogeochemical characteristics of uranium and uranium mineralization in groundwater in the southern margin of Yili Basin[J]. Modern Mining, 2017,33(3):73-76.
[28]
Montúfar J C B, Cortés M R, Cortés I A R, et al. Uranium-series isotopes transport in surface, vadose and ground waters at San Marcos uranium bearing basin, Chihuahua, Mexico[J]. Applied Geochemistry, 2012,27(6):1111-1122.
[29]
Guo H, Jia Y, Wanty R B, et al. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia:Implication for origins and fate controls[J]. Science of the Total Environment, 2015,541:1172-1190.
[30]
Geerd A. Smidt, Rula Hassoun, Lothar Erdinger, et al. Uranium in German tap and groundwater-Occurrence and origins[J]. Springer Geology, 2011:807-820.
[31]
Wu Y, Wang Y, Xie X. Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, Northern China[J]. Science of the Total Environment, 2014,472:809-817.
[32]
Zhang B, Wang X, Zhou J, et al. Regional geochemical survey of concealed sandstone-type uranium deposits using fine-grained soil and groundwater in the Erlian basin, North-East China[J]. Journal of Geochemical Exploration, 2020,216:106573.
[33]
Dutova E M, Nikitenkov A N, Pokrovskiy V D, et al. Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation[J]. Journal of Environmental Radioactivity, 2017,178:63-76.
[34]
Alam M S, Cheng T. Uranium release from sediment to groundwater:influence of water chemistry and insights into release mechanisms[J]. Journal of Contaminant Hydrology, 2014,164:72-87.
[35]
Liesch T, Hinrichsen S, Goldscheider N. Uranium in groundwaterfertilizers versus geogenic sources[J]. Science of the Total Environment, 2015,536:981-995.