The analysis of dominant factors in enhancing municipal sludge bioleaching efficiency by quartz sand
SONG Yong-wei1, MA Ying-ying1,2, WANG rui1, WU Yi-qian1, WANG He-ru1
1. Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China; 2. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Abstract:Major factors affecting the improvement of bioleaching efficiency with the participation of quartz sand were investigated. Results showed that the bioacidification of A. ferrooxidans was the dominant factor in the first 0~72h. After 72h, the formation of secondary minerals was more significant than the bioacidification of A. ferrooxidans in improving sludge dewaterability, thereby became the major factor. The gradual increment in the yield of secondary minerals could be attributed to the continuing bioleaching process, and further increased the dewaterability based on bioacidification. The specific resistance to filtration (SRF) of municipal sludge declined from the initial value of 17.13×1012m/kg to a minimum of 3.56×1012m/kg at 48h under the joint action of bioacidification and secondary minerals. By comparison, the minimum sludge SRF under each single factor could be observed at 72h, i.e., 3.89×1012m/kg for bioacidification and 4.77×1012m/kg for secondary minerals. Thus, the joint action of these two factors was more efficient in reducing the bioleaching time and further improving sludge dewaterability.
宋永伟, 马莹莹, 王蕊, 吴怡谦, 王鹤茹. 石英砂提高城市污泥生物沥浸效率主导因素分析[J]. 中国环境科学, 2021, 41(5): 2283-2289.
SONG Yong-wei, MA Ying-ying, WANG rui, WU Yi-qian, WANG He-ru. The analysis of dominant factors in enhancing municipal sludge bioleaching efficiency by quartz sand. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(5): 2283-2289.
Zhou L X, Fang D, Wang S M, et al. Bioleaching of Cr from tannery sludge:the effects of initial acid addition and recycling of acidified bioleached sludge[J]. Environmental Technology, 2005,26(3):277-284.
[2]
Chen S Y, Lin J G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor:effects of sulfur concentration[J]. Water Research, 2004,38(14/15):3205-3214.
[3]
石超宏,朱能武,吴平霄,等.生物沥浸去除污泥重金属及改善脱水性能研究[J]. 中国环境科学, 2013,33(3):474-479. Shi C H, Zhu N W, Wu P X, et al. Heavy metals removal from sewage sludge and dewaterability improvement by bioleaching[J]. China Environmental Science, 2013,33(3):474-479.
[4]
Li J, Zhou L X, Zhang R C, et al. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment[J]. Journal of Hazardous Materials, 2011,192(1):226-233.
[5]
Zhou Q Y, Gao J Q, Li Y H. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation[J]. Water Science & Technology, 2017,76(6):1347-1359.
[6]
甘莉,刘贺琴,王清萍,等.氧化亚铁硫杆菌生物浸出污泥中的重金属离子[J]. 中国环境科学, 2014,34(10):2617-2623. Gan L, Liu H Q, Wang Q P, et al. Bioleaching of heavy metals in sewage sludge using Acidithiobacillus ferrooxidans[J]. China Environmental Science, 2014,34(10):2617-2623.
[7]
Shi C H, Zhu N W, Shang R, et al. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums[J]. World Journal of Microbiology & Biotechnology, 2015,31(11):1719-1728.
[8]
孟维举,李军,张静慧,等.生物沥浸细菌的培养及其对污泥脱水性能的影响[J]. 中国给水排水, 2015,31(7):34-38. Meng W J, Li J, Zhang J H, et al. Culture of bioleaching bacteria and its influence on dewaterability of sewage sludge[J]. China Water & Wastewater, 2015,31(7):34-38.
[9]
Liu F W, Zhou J, Wang D Z, et al. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods[J]. Journal of Environmental Sciences, 2012,24(8):1403-1410.
[10]
宋永伟,王电站,刘奋武,等.低温条件下污泥静置沉降时间对城市生物沥浸污泥脱水性能的影响[J]. 环境科学学报, 2012,32(4):815-820. Song Y W, Wang D Z, Liu F W, et al. Effect of sedimentation time on the dewaterability of bioleaching municipal sewage sludge at low temperatures[J]. Acta Scientiae Circumstantiae, 2012,32(4):815-820.
[11]
宋兴伟,周立祥.生物沥浸处理对城市污泥脱水性能的影响研究[J]. 环境科学学报, 2008,28(10):2012-2017. Song X W, Zhou L X. The influence of bioleaching on dewaterability of municipal sewage sludge[J]. Acta Scientiae Circumstantiae, 2008,28(10):2012-2017.
[12]
陈浩,周立祥,李超.空气提升式反应器处理制革污泥的中试研究[J]. 环境科学, 2007,28(9):2046-2051. Chen H, Zhou L X, Li C. The removal of Cr from tannery sludge by bioleaching in air-lift reactor:A pilot study[J]. Environmental Science, 2007,28(9):2046-2051.
[13]
Murugesan K, Ravindran B, Selvam A, et al. Enhanced dewaterability of anaerobically digested sewage sludge using Acidithiobacillus ferrooxidans culture as sludge conditioner[J]. Bioresource Technology, 2014,169:374-379.
[14]
黄峰源,王世梅,周立祥.氧化硫硫杆菌TS6的生长条件及其对重金属耐受性研究[J]. 环境科学学报, 2006,26(8):1290-1294. Huang F Y, Wang S M, Zhou L X. Optmium growth condition of Acidithiobacillus thiooxidans TS6and its resistance to heavy metals[J]. Acta Scientiae Circumstantiae, 2006,26(8):1290-1294.
[15]
Zhou J, Zheng G Y, Wong J W C, et al. Degradation of inhibitory substances in sludge by Galactomyces sp. Z3and the role of its extracellular polymeric substances in improving bioleaching[J]. Bioresource Technology, 2013,132:217-223.
[16]
Liu F W, Zhou L X, Zhou J, et al. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH[J]. Journal of Hazardous Materials, 2012,221-222:170-177.
[17]
朱海凤,周立祥,王电站.生物沥浸的酸化效应对城市污泥脱水性能的影响[J]. 环境科学, 2012,33(3):916-921. Zhu H F, Zhou L X, Wang D Z. Effect of Acidification on the dewaterability of sewage sludge in bioleaching[J]. Environmental Science, 2012,33(3):916-921.
[18]
朱海凤.生物酸化和生物成矿对城市污泥脱水性能的影响及其机理研究[D]. 南京:南京农业大学, 2012. Zhu H F. Effect of acidification and formation of secondary minerals on the dewaterability of sewage sludge in bioleaching[D]. Nanjing:Nanjing Agricultural University, 2012.
[19]
Dutrizac J E. The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite[J]. Hydrometallurgy, 1996,42:293-312.
[20]
王敏,周立祥.硅藻土、石英砂和钾离子促进微生物转化酸性矿山废水中亚铁成次生矿物的研究[J]. 岩石矿物学杂志, 2011,30(6):1031-1038. Wang M, Zhou L X. The removal of soluble ferrous iron in acid mine drainage (AMD) through the formation of biogenic iron oxyhydrosulfate precipitates facilitated by diatomite, quartz sand and potassium[J]. Acta Petrologica Et Mineralogica, 2011,30(6):1031-1038.
[21]
Ma Y Y, Wang H R, Song Y W, et al. The synthesis of secondary iron minerals induced by quartz sand during the bioleaching process improves the dewaterability of municipal sewage sludge[J]. Minerals, 2018,8(10):1-12.
[22]
Huo M B, Zheng G Y, Zhou L X. Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content[J]. Bioresource Technology, 2014,168:190-197.
[23]
宋永伟,赵博文,霍敏波,等.温度对嗜酸性硫杆菌活性和生物成因次生铁矿物形成的影响[J]. 环境科学, 2013,34(8):3264-3271. Song Y W, Zhao B W, Huo M B, et al. Effect of temperature on activity of Acidithiobacillus ferrooxidan and formation of biogenic secondary iron minerals[J]. Environmental Science, 2013,34(8):3264-3271.
[24]
王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法[J]. 环境科学学报, 2005,25(10):1418-1420. Wang S M, Zhou L X. A renovated approach for increasing colony count efficiency of Thiobacillus ferrooxidans and Thiobacillus thiooxidans:double-layer plates[J]. Acta Scientiae Circumstantiae, 2005,25(10):1418-1420.
[25]
熊慧欣,梁剑茹,徐轶群,等.不同因素影响下Fe(Ⅲ)水解中和法制备FeOOH矿相的光谱分析[J]. 光谱学与光谱分析, 2009,29(7):2005-2009. Xiong H X, Liang J R, Xu Y Q, et al. Spectral analysis of FeOOH prepared through hydrolysis and neutralization of ferric solutions under different conditions[J]. Spectroscopy and Spectral Analysis, 2009,29(7):2005-2009.
[26]
Wang H, Bigham J M, Tuovinen O H. Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms[J]. Materials Science and Engineering:C, 2006,26(4):588-592.
[27]
Bigham J M, Schwertmann U, Pfab G. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage[J]. Applied Geochemistry, 1996,11(6):845-849.
[28]
曹丽娜,陈炳辉,苟习颖,等.不同条件下形成的黄钾铁矾微形貌对比研究[J]. 高校地质学报, 2019,25(3):333-340. Cao L N, Chen B H, Gou X Y, et al. A comparative study on microtopography of jarosite formed in different conditions[J]. Geological Journal of China Universities, 2019,25(3):333-340.
[29]
Regenspurg S, Brand A, Peiffer S. Formation and stability of schwertmannite in acidic mining lakes[J]. Geochimica Et Cosmochimica Acta, 2004,68(6):1185-1197.
[30]
Gagliano W B, Brill M R, Bigham J M, et al. Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland[J]. Geochimica Et Cosmochimica Acta, 2004,68(9):2119-2128.
[31]
JCPDS (Joint Committee on Powder Diffraction Standards). Mineral Powder Diffraction Files[Z]. International Center for Diffraction Data, Swarthmore:Pennsyvania, 2002.
[32]
Wong J W C, Murugesan K, Yu S M, et al. Improved dewatering of CEPT sludge by biogenic flocculant from Acidithiobacillus ferrooxidans[J]. Water Science and Technology, 2016,73(4):843-848.
[33]
刘奋武,周立祥,周俊,等.生物沥浸处理提高城市污泥脱水性能的中试研究:连续运行模式[J]. 环境科学, 2011,32(10):2993-2998. Liu F W, Zhou L X, Zhou J, et al. Improvement of municipal sewage sludge dewaterability by bioleaching:A pilot-scale study with a continuous plug flow reaction model[J]. Environmental Science, 2011,32(10):2993-2998.