The toxic effects of maternal cadmium exposure on the hormone production of the mouse placentas
XU Peng1, GUO Jing1, LI Zi-yan1, REN Huan1, JIN Ya-ling1, WANG Feng1, DU Hong-li1, LI Zhi-lang2,3, LIU Ming4,3, LI Shao-qin5, ZHAO Mei-rong6, WANG Lan1
1. School of Life Science, Shanxi University, Taiyuan 030006, China; 2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 3. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 4. School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; 5. College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; 6. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:This study explored the toxic effects of low-dose maternal cadmium (Cd) exposure on the levels of estriol, progesterone and their substrates in the mouse serum and placentas. The mRNA levels of the genes involved in the hormone production were also examined by quantitative real-time PCR. The results showed that the concentration of progesterone, but not estriol, was significantly decreased by 43% and 13% respectively in the serum and placentas from the Cd-exposed mice, despite that the level of substrate for progesterone production remained unchanged in the placentas. The mRNA expression levels of progesterone synthase HSD3B6 gene and its regulatory gene D3 were significantly decreased by 73% and 85% in the Cd-exposed placentas respectively. In conclusion, low-dose maternal Cd exposure can inhibit the progesterone production in the placentas, which is likely to be due to the decrease in the expressions of hormone gene related to the hormone synthesis, such as HSD3B6 and D3.
许鹏, 郭婧, 李子燕, 任焕, 靳雅伶, 王峰, 杜红丽, 黎治浪, 刘明, 李少钦, 赵美蓉, 王兰. 镉对孕鼠胎盘激素合成功能的毒性效应[J]. 中国环境科学, 2022, 42(3): 1359-1368.
XU Peng, GUO Jing, LI Zi-yan, REN Huan, JIN Ya-ling, WANG Feng, DU Hong-li, LI Zhi-lang, LIU Ming, LI Shao-qin, ZHAO Mei-rong, WANG Lan. The toxic effects of maternal cadmium exposure on the hormone production of the mouse placentas. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(3): 1359-1368.
Agarwal S, Zaman T, Tuzcu E M, et al. Heavy metals and cardiovascular disease:Results from the national health and nutrition examination survey (NHANES)1999-2006[J]. Angiology, 2011,62(5):422-429.
[2]
Thompson J, Bannigan J. Cadmium:Toxic effects on the reproductive system and the embryo[J]. Reproductive Toxicology, 2008,25(3):304-315.
[3]
赵峻,吴连方.胎儿生长受限病因研究进展[J].中华围产医学杂志, 2003,6(3):187-189. Zhao J, Wu L F. Research progress on etiology of fetal growth restriction[J]. Chinese Journal of Perinatal Medicine, 2003,6(3):187-189.
[4]
Francesca G, Lager S. Placental Nutrient Transport and Intrauterine Growth Restriction[J]. Frontiers in physiology, 2016,7:40.
[5]
Zeng X, Xu X J, Zheng X B, et al. Heavy metals in PM2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area[J]. Environmental Pollution, 2016,210:346-353.
[6]
Jin L, Liu L F, Ye B X, et al. Concentrations of selected heavy metals in maternal blood and associated factors in rural areas in Shanxi Province, China[J]. Environment International, 2014,66:157-164.
[7]
Lin C M, Doyle P, Wang D L, et al. Does prenatal cadmium exposure affect fetal and child growth?[J]. Occupational and Environmental Medicine, 2011,68(9):641-646.
[8]
Shirai S, Suzuki Y, Yoshinaga J, et al. Maternal exposure to low-level heavy metals during pregnancy and birth size[J]. Journal of Environmental Science and Health, Part A, 2010,45(11):1468-1474.
[9]
Xu P, Wu ZQ, Xi Y, et al. Epigenetic regulation of placental glucose transporters mediates maternal cadmium-induced fetal growth restriction[J]. Toxicology, 2016,372:34-41.
[10]
Wang Z, Wang H, Xu Z M, et al. Cadmium-induced teratogenicity:Association with ROS-mediated endoplasmic reticulum stress in placenta[J]. Toxicology and Applied Pharmacology, 2012,259(2):236-247.
[11]
Ji L, Brkic J, Liu M, et al. Placental trophoblast cell differentiation:Physiological regulation and pathological relevance to preeclampsia[J]. Molecular Aspects of Medicine, 2013,34(5):981-1023.
[12]
Satterfield M C, Edwards A K, Bazer F W, et al. Placental adaptation to maternal malnutrition[J]. Reproduction, 2021,162(4):R73-R83.
[13]
Regnault T R H, Galan H L, Parker T A, et al. Placental development in normal and compromised pregnancies——a review[J]. Placenta, 2002,23:S119-S129.
[14]
顾秀兰.雌三醇及胎盘催乳素检测对胎儿生长受限的意义[J].国际检验医学杂志, 2016,37(8):1060-1061. Gu X L. Effect of estriol and placenta prolactin on fetal growth[J]. International Journal of Lab Medicine, 2016,37(8):1060-1061.
[15]
Mikolić A, Piasek M, Sulimanec Grgec A, et al. Oral cadmium exposure during rat pregnancy:assessment of transplacental micronutrient transport and steroidogenesis at term[J]. Journal of Applied Toxicology, 2015,35:508-519.
[16]
Zeng H L, Li H, Lu J, et al. Assessment of 12metals and metalloids in blood of general populations living in Wuhan of China by ICP-MS[J]. Biological Trace Element Research, 2019,189(2):344-353.
[17]
Wang F, Fan F, Wang L, et al. Maternal cadmium levels during pregnancy and the relationship with preeclampsia and fetal biometric parameters[J]. Biological Trace Element Research, 2018,186:322-329.
[18]
Xu P, Guo H Q, Wang H, et al. Downregulations of placental fatty acid transporters during cadmium-induced fetal growth restriction[J]. Toxicology, 2019,423:112-122.
[19]
Napso T, Yong H E J, Lopez-Tello J, et al. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation[J]. Frontiers in Physiology, 2018,9:1091.
[20]
白红文,孙洪涛.探讨催产素生物学功能的相关研究进展[J].中西医结合心血管病电子杂志, 2020,8(25):13-14. Bai H W, Sun H T. Research progress on biological function of the oxytocin[J]. Cardiovascular Disease Electronic Journal of Integrated Traditional Chinese and Western Medicine, 2020,8(25):13-14.
[21]
Das N, Kumar T R. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action[J]. Journal of Molecular Endocrinology, 2018,60(3):R131-R155.
[22]
邹晓平,王雪锋,肖彩琴,等.不同性别及出生体重新生儿脐血促性腺激素和睾酮水平的变化[J].临床儿科杂志, 2009,27(6):560-561. Zou X P, Wang X F, Xiao C Q, et al. Changes of gonad-stimulating hormone and testosterone in umbilical cord blood in neonates with different gender and birth weight[J]. Journal of Clinical Pediatrics, 2009,27(6):560-561.
[23]
Scaife P J, Mohaupt M G. Salt, aldosterone and extrarenal Na+-sensitive responses in pregnancy[J]. Placenta, 2017,56:53-58.
[24]
Moog N K, Entringer S, Heim C, et al. Influence of maternal thyroid hormones during gestation on fetal brain development[J]. Neuroscience, 2017,342:68-100.
[25]
万顺伦.妊娠期糖皮质激素对大鼠海马11β-羟基类固醇脱氢酶Ⅰ型印迹作用的研究[D].上海:第二军医大学, 2002. Wan S L. Prenatal imprinting effects of glucocorticoid on 11β-hydroxysteroid dehydrogenase type I in the rat hippocampus[D]. Shanghai:Second Military Medical University, 2002.
[26]
张尚卫,黄大鹏.动物胎盘生物活性物质及应用研究进展[J].动物医学进展, 2017,38(12):99-103. Zhang S W, Huang D P. Progress on bioactive substances and functions of animal placenta[J]. Progress in Veterinary Medicine, 2017,38(12):99-103.
[27]
黎杨坚,李燕姬,伦妙容.妊娠期血清雌激素和孕激素水平的变化及其与胎儿宫内发育情况的关系[J].实用医技杂志, 2019,26(5):564-565. Li Y J, Li Y J, Lun M R. Changes of serum estrogen and progesterone levels during pregnancy and its relationship with fetal intrauterine development[J]. Journal of Practical Medical Techniques, 2019, 26(5):564-565.
[28]
Ali E S, Mangold C, Peiris A N. Estriol:emerging clinical benefits[J]. Menopause, 2017,24(9):1081-1085.
[29]
周杰.孕期动态监测游离雌三醇对胎儿生长受限的预测[D].南京:南京医科大学, 2018. Zhou J. Predictive of dynamic monitoring unconjugated estriol during pregnancy on fetal growth restriction[D]. Nanjing:Nanjing Medical University, 2018.
[30]
Gopalakrishnan K, Mishra J S, Chinnathambi V, et al. Elevated testosterone reduces uterine. blood flow, spiral artery elongation, and placental oxygenation in pregnant rats[J]. Hypertension, 2016, 67(3):630-639.
[31]
Geyer J, Bakhaus K, Bernhardt R, et al. The role of sulfated steroid hormones in. reproductive processes[J]. Journal of Steroid Biochemistry and Molecular Biology, 2017,172:207-221.
[32]
Costa M A. The endocrine function of human placenta:an overview[J]. Reproductive Biomedicine Online, 2016,32(1):14-43.
[33]
王彦德,刘虹,孙袁,等.胎儿生长受限孕妇血清及脐血瘦素水平检测的临床意义[J].中国妇幼保健, 2009,24(2):244-246. Wang Y D, Liu H, Sun Y, et al. Clinical significance of measuring serum leptin and cord blood leptin in FGR patient[J]. Women's Health Care in China, 2009,24(2):244-246.
[34]
张巧璇,郭玉蝉,邵艳玲.脐血生长激素水平与胎儿生长受限的关系[J].海南医学, 2017,28(11):1863-1864. Zhang Q X, Guo Y C, Shao Y L. Relationship between cord blood growth hormone level and fetal growth restriction[J]. Hainan Medicine Journal, 2017,28(11):1863-1864.
[35]
Fournier T, Guibourdenche J, Evain-Brion D. Review:hCGs:different sources of production, different glycoforms and functions[J]. Placenta, 2015,36Suppl 1:S60-S65.
[36]
帅妹,黄云,廖花,等.孕4~12周血清人绒毛膜促性腺激素、雌二醇水平变化情况分析及其预测早期妊娠结局的价值[J].妇幼医学, 2019,26(26):85-87,100. Shuai M, Huang Y, Liao H, et al. Analysis of the changes of serum human chorionic gonadotropin and estradiol levels in 4-12weeks of pregnancy and its value in predicting early pregnancy outcomes[J]. Contemporary Medicine, 2019,26(26):85-87,100.
[37]
Peng L H, Payne A H. AP-2gamma and the homeodomain protein distal-less 3are required for placental-specific expression of the murine 3beta-hydroxysteroid dehydrogenase VI gene, HSD3B6[J]. The Journal of Biological Chemistry, 2002,277(10):7945-7954.
[38]
Hinder J. Poisoning by chloride of cadmium; death[J]. The Indian medical gazette, 1866,1(6):156-157.
[39]
Ferm V H, Carpenter S J. Teratogenic effect of cadmium and its inhibition by zinc[J]. Nature, 1967,216(5120):1123.
[40]
Dong F, Xiao P, Li X Y, et al. Cadmium triggers oxidative stress and mitochondrial injury mediated apoptosis in human extravillous trophoblast HTR-8/SVneo cells[J]. Reproductive Toxicology, 2021, 101:18-27.
[41]
DeMayo F J, Lydon J P. 90Years of Progesterone:New insights into progesterone receptor signaling in the endometrium required for embryo implantation[J]. Journal of Molecular Endocrinology, 2020,65(1):T1-T14.
[42]
Xiong Y W, Zhu H L, Nan Y, et al. Maternal cadmium exposure during late pregnancy causes fetal growth restriction via inhibiting placental progesterone synthesis[J]. Ecotoxicology and Environmental Safety, 2020,187:109879.
[43]
Kawai M, Swan K F, Green A E, et al. Placental endocrine disruption induced by cadmium:effects on P450cholesterol side-chain cleavage and 3&beta-hydroxysteroid dehydrogenase enzymes in cultured human trophoblasts[J]. Biology of Reproduction, 2002,67(1):178-183.
[44]
Piasek M, Laskey J W, Kostial K, et al. Assessment of steroid disruption using cultures of whole ovary and/or placenta in rat and in human placental tissue[J]. International Archives of Occupational and Environmental Health, 2002,75(1):36-44.
[45]
Stasenko S, Bradford E M, Piasek M, et al. Metals in human placenta:focus on the effects of cadmium on steroid hormones and leptin[J]. Journal of Applied Toxicology, 2010,30(3):242-253.
[46]
Piasek M, Schönwald N, Blanusa M, et al. Biomarkers of heavy. metal reproductive effects and interaction with essential elements in experimental studies on female rats[J]. Arhiv Za Higijenu Radai Toksikologiju, 1996,47(3):245-259.
[47]
Chernoff N. Teratogenic effects of cadmium in rats[J]. Teratology, 1973,8(1):29-32.
[48]
Luo X, Li LB, Ma M F, et al. Effects of low-dose cadmium exposure during gestation and lactation on development and reproduction in rats[J]. Environmental Science and Pollution Research, 2015,22(14):10569-10579.
[49]
Morel Y, Roucher F, Plotton I, et al. Evolution of steroids during pregnancy:maternal, placental and fetal synthesis[J]. Annales D Endocrinologie, 2016,77(2):82-89.