Summer O3 pollution potential model based on copula function in Chengdu
REN Zhi-han1,2, NI Chang-jian1,2, CHEN Yun-qiang3, YANG Hong3
1. School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China; 2. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, China; 3. Meteorological Service Center of Sichuan Province, Chengdu 610072, China
Abstract:The evolution of Ozone (O3) concentration near the ground is closely related to the coupling effect of multiple meteorological factors, but the complexity and uncertainty keep still unclear . In order to explore the problem mentioned above, the hourly monitoring data of O3 concentration as well as the surface meteorological observation data during the same time period in Chengdu from 2016 to 2019 during summer were collected, a three-dimensional copula joint probability distribution model of O3 pollution potential (including UV radiation, relative humidity, and temperature) was constructed, and the applicability of the model was further explored. Firstly, the optimal marginal probability distributions of UV radiation, relative humidity and ambient temperature under different O3 concentration levels were determined at significant level of a=0.05 in K-S test based on the optimization of probability distributions belonging to SciPy package. Secondly, the root-mean-square-error (RMSE), Akaike Information Criterion (AIC), and Bayesian Information criterion (BIC) of three kinds of joint probability distribution functions were calculated, respectively. With the help of Anderson-Darling test (A-D test), it was found that asymmetric three-dimensional frank Copula joint probability distribution function (M3Copula) has better fitting effects on the joint probability distribution characteristics of UV radiation, relative humidity, and ambient temperature, respectively, under different O3 concentration levels. Finally, Taking the joint probability density of M3Copula under different O3 concentration levels as the membership of O3 concentration levels, the classification results of O3 pollution potential has a fairly good indication of the actual O3 concentration levels, and the M3Copula can simulate the O3 concentration levels with 63% accuracy, of which the simulation accuracy of excellent level, good level, light pollution level and moderate or higher pollution level were 82%, 64%, 48%, and 75%, respectively. Our findings demonstrated that the classification results of O3 pollution potential have a fairly good instruction significance to actual O3 concentration levels.
任至涵, 倪长健, 陈云强, 杨泓. 基于Copula函数的成都夏季O3污染潜势模型[J]. 中国环境科学, 2022, 42(9): 4009-4017.
REN Zhi-han, NI Chang-jian, CHEN Yun-qiang, YANG Hong. Summer O3 pollution potential model based on copula function in Chengdu. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(9): 4009-4017.
刘 建,吴 兑,范绍佳,等.前体物与气象因子对珠江三角洲臭氧污染的影响 [J]. 中国环境科学, 2017,37(3):813-820. Liu J, Wu D, Fan S J, et al. Impacts of precursors and meteorological factors on ozone pollution in Pearl River Delta [J]. China Environmental Science, 2017,37(3):813-820.
[2]
姜 华,常宏咪.我国臭氧污染形势分析及成因初探 [J]. 环境科学研究, 2021,34(7):1576-1582. Jiang H, Chang H M. Analysis of China's Ozone Pollution Situation, Preliminary Investigation of Causes and Prevention and Control Recommendations [J]. Research of Environmental Sciences, 2021, 34(7):1576-1582.
[3]
Zhang Z Y, Zhang X L, Gong D Y, et al. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing [J]. Atmospheric Environment, 2015,108:67-75.
[4]
栗泽苑,杨雷峰,华道柱,等.2013~2018年中国近地面臭氧浓度空间分布特征及其与气象因子的关系 [J]. 环境科学研究, 2021,34(9): 2094-2104. Li Z Y, Yang L F, Hua D Z, et al. Spatial Pattern of Surface Ozone and its Relationship with Meteorological Variables in China during 2013~2018 [J]. Research of Environmental Sciences, 2021,34(9): 2094-2104.
[5]
Liu Y M, Wang T. Worsening urban ozone pollution in China from 2013 to 2017–Part 2: The effects of emission changes and implications for multi-pollutant control [J]. Atmospheric Chemistry and Physics, 2020,20(11):6323-6337.
[6]
张天岳,沈楠驰,赵 雪,等.2015~2019年成渝城市群臭氧浓度时空变化特征及人口暴露风险评价 [J]. 环境科学学报, 2021,41(10): 4188-4199. Zhang T Y, Shen N C, Zhao X, et al. Spatiotemporal variation characteristics of ozone and its population exposure risk assessment in Chengdu-Chongqing urban agglomeration during 2015 to 2019 [J]. Acta Scientiae Circumstantiae, 2021,41(10):4188-4199.
[7]
方笑堃,罗小三,张 丹,等.臭氧污染对水稻生长、产量及矿质金属元素含量的影响 [J]. 环境科学, 2020,41(8):3797-3803. Fang X K, Luo X S, Zhang D, et al. Effects of Ozone Pollution on Growth, Yields, and Mineral Metallic Element Contents of Paddy Rice [J]. Environmental science, 2020,41(8):3797-3803.
[8]
Xie B, Zhang H, Wang Z L, et al. A modeling study of effective radiative forcing and climate response due to tropospheric ozone [J]. Advances in Atmospheric Sciences, 2016,33(7):819-828.
[9]
林伟立,胡建信,唐孝炎.臭氧层耗损对对流层大气质量的影响和在中国的响应 [J]. 环境科学研究, 2002,(3):61-64. Lin W L, Hu J X, Tang X Y. The Impact of Stratospheric Ozone Depletion on the Tropospheric Air Quality and Implications for China [J]. Research of Environmental Sciences, 2002,(3):61-64.
[10]
李嫣婷,孙天乐,何 龙,等.深圳市秋季大气臭氧立体分布特征 [J]. 中国环境科学, 2020,40(5):1975-1981. Li Y T, Sun T L, He L, et al. Vertical distribution characteristics of ozone pollution in Shenzhen in autumn [J]. China Environmental Science, 2020,40(5):1975-1981.
[11]
唐孝严,张远航,邵 敏.大气环境化学 [M]. 北京:高等教育出版社, 2006:272-273. Tang X Y, Zhang Y H, Shao M. Atmosphere Environmental Chemistry [M]. Beijing: China Higher Education Press, 2006:272-273.
[12]
Li K W, Chen L H, Ying F, et al. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China [J]. Atmospheric Research, 2017:40-52.
[13]
Tao W, Li X, Peter B, et al. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects [J]. Science of the Total Environment, 2016:1582-1596.
[14]
易 睿,王亚林,张殷俊,等.长江三角洲地区城市臭氧污染特征与影响因素分析 [J]. 环境科学学报, 2015,35(8):2370-2377. Yi R, Wang Y L, Zhang Y J, et al. Pollution characteristics and influence factors of ozone in Yangtze River Delta [J]. Acta Scientiae Circumstantiae, 2015,35(8):2370-2377.
[15]
曹庭伟,吴 锴,康 平,等.成渝城市群臭氧污染特征及影响因素分析 [J]. 环境科学学报, 2018,38(4):1275-1284. Cao T W, Wu K, Kang P, et al. Study on ozone pollution characteristics and meteorological cause of Chengdu-Chongqing urban agglomeration [J]. Acta Scientiae Circumstantiae, 2018,38(4):1275- 1284.
[16]
黄 俊,廖碧婷,吴 兑,等.广州近地面臭氧浓度特征及气象影响分析 [J]. 环境科学学报, 2018,38(1):23-31. Huang J, Liao B T, Wu D, et al. Guangzhou ground level ozone concentration characteristics and associated meteorological factors [J]. Acta Scientiae Circumstantiae, 2018,38(1):23-31.
[17]
王 磊,刘端阳,韩桂荣,等.南京地区近地面臭氧浓度与气象条件关系研究 [J]. 环境科学学报, 2018,38(4):1285-1296. Wang L, Liu D Y, Han G R, et al. Study on the relationship between surface ozone concentrations and meteorological conditions in Nanjing, China [J]. Acta Scientiae Circumstantiae, 2018,38(4):1285-1296.
[18]
Ying Y T, Sze F L, Roland V G. The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia [J]. Atmospheric Environment, 2013,70:435-446.
[19]
徐 锟,刘志红,何沐全,等.成都市夏季近地面臭氧污染气象特征 [J]. 中国环境监测, 2018,34(5):36-45. Xu K, Liu z h, He M Q, et al. Meteorological Characteristics of O3 Pollution Near the Ground in Summer of Chengdu [J]. Environmental Monitoring in China, 2018,34(5):36-45.
[20]
胡成媛,康 平,吴 锴,等.基于GAM模型的四川盆地臭氧时空分布特征及影响因素研究 [J]. 环境科学学报, 2019,39(3):809-820. Hu C Y, Kang P, Wu K, et al. Study of the spatial and temporal distribution of ozone and its influence factors over Sichuan Basin based on generalized additive model [J]. Acta Scientiae Circumstantiae, 2019,39(3):809-820.
[21]
严晓瑜,缑晓辉,杨 婧,等.中国典型城市臭氧变化特征及其与气象条件的关系 [J]. 高原气象, 2020,39(2):416-430. Xiao Y, GOU X H, YANG J, et al. The Variety of Ozone and its Relationship with Meteorological Conditions in Typical Cities in China [J]. Plateau Meteorology, 2020,39(2):416-430.
[22]
任至涵,倪长健,花瑞阳,等.成都O3逐日污染潜势关键时段优选的GAM模型 [J]. 中国环境科学, 2021,41(11):5079-5085. Ren Z H, Ni C J, Hua R Y, et al. Optimization of the key period of daily ozone pollution potential in Chengdu based on Generalized Additive Model [J]. China Environmental Science, 2021,41(11):5079- 5085.
[23]
白莹莹,程炳岩,王 勇,等.城市化进程对重庆夏季高温炎热天气的影响 [J]. 气象, 2015,41(3):319-327. Bai Y Y, Cheng B Y, Wang Y, et al. Influences of Urbanization Speed on the Summer High Temperature and Sultry Weather in Chongqing [J]. Meteorological monthly, 2015,41(3):319-327.
[24]
黄晓娴,王体健,江 飞.空气污染潜势-统计结合预报模型的建立及应用 [J]. 中国环境科学, 2012,32(8):1400-1408. Huang X X, Wang T J, Jiang F, et al. An air pollution potential forecast model combined with statistical method and its application [J]. China Environmental Science, 2015,35(8):2370-2377.
[25]
Mishra A K, Singh V P, Desai V R. Drought characterization: A probabilistic approach [J]. Stochastic Environment Research and Risk Assessment, 2009,23(1):41-55.
[26]
Song S B, Singh V P. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data [J]. Stochastic Environmental Research and Risk Assessment, 2010,24(3):425-444.
[27]
Longin F, Solnik B. Extreme correlations of international equity markets [J]. Journal of Finace, 2001,56:649-676.
[28]
Hu L. Dependence patterns across financial markets: A mixed copula approach [J]. Applied Financial Economics, 2006,16(10):717-729.
[29]
Zhang L, Singh V P. Trivariate flood frequency analysis using the Gumbel-Hougaard copula [J]. Journal of Hydrologic Engineering, 2007,12(4):431-439.
[30]
Garcia-Portugues E, Crujeiras R M, Gonzalez-Manteiga W. Exploring wind direction and SO2concentration by circular-linear density estimation [J]. Stochastic Environmental Research & Risk Assessment, 2013,27(5):1055-1067.
[31]
李 宁,顾孝天,刘雪琴.沙尘暴灾害致灾因子三维联合分布与重现期探索 [J]. 地球科学进展, 2013,28(4):490-496. Li N, Gu X T, Liu X Q. Return period analysis based on joint distribution of three hazards in dust storm disaster [J]. Advances in Earth Science, 2013,28(4):490-496.
[32]
陈子燊,黄 强,刘曾美.基于非对称Archimedean Copula的三变量洪水风险评估 [J]. 水科学进展, 2016,27(5):763-771. Chen Z Y, Huang Q, Liu Z M. Three-variable flood risk assessment based on asymmetric Archimedean Copula [J]. Advances in water Science, 2016,27(5):763-771.
[33]
许红师,练继建,宾零陵,等.台风灾害多元致灾因子联合分布研究 [J]. 地理科学, 2018,38(12):2118-2124. Xu H S, Lian J J, Bin L L et al. Joint Distribution of Multiple Typhoon Hazard Factors [J]. Scientia Geographica Sinica, 2018,38(12):2118- 2124.
[34]
Ji Z H, Liu X Q. Comparative analysis of PM2.5 pollution risk in China using three-dimensional Archimedean copula method [J]. Geomatics, Natural Hazards and Risk, 2019,10(1):2368-2386.
[35]
汪可可,康 平,周明卫,等.四川盆地臭氧浓度空间分异及驱动因子研究 [J]. 中国环境科学, 2020,40(6):2361-2370. Wang K K, Kang P, Zhou M W, et al. Spatial differentiation and driving factors of ozone concentration in Sichuan Basin [J]. China Environmental Science, 2020,40(6):2361-2370.
[36]
HJ633-2012 环境空气质量指数技术规定(试行) [S]. HJ633-2012 Technical regulation on ambient air quality index (on trial) [S].
[37]
Sklar A. Random variables, joint distribution functions and copulas [J]. Kybernetika-Praha, 1973,9(6):449-460.
[38]
宋松柏,蔡焕杰,金菊良,等.Copulas函数及其在水文中的应用 [M]. 北京:科学出版社, 2012:112-113. Song S B, Cai H J, Jin J L, et al. Copulas function and its application in hydrology [M]. Beijing: Science Press, 2012:112-113.
[39]
王 沁,吕王勇.基于非对称阿基米德Copula模型的投资组合风险度量 [J]. 四川师范大学学报(自然科学版), 2019,42(2):260-268. Wang Q, Lv W Y, et al. Portfolio risk measurement based on asymmetric Archimedes Copula model [J]. Journal of Sichuan Normal University (Natural Science), 2019,42(2):260-268.
[40]
王筱萍,高慧敏,曾建潮.基于嵌套Gumbel Copula函数的分布估计算法 [J]. 系统仿真学报, 2013,25(10):2337-2342. Wang Y P, Gao H M, Zeng J C, Estimation of Distribution Algorithms Based on Nested Gumbel Copula [J]. Journal of System Simulation, 2013,25(10):2337-2342.
[41]
杨益党,罗羡华.Copula函数的参数估计 [J]. 新疆师范大学学报(自然科学版), 2007,26(2):5. Yang Y D, Luo X H. Parameter estimation of Copula function [J]. Journal of Xinjiang Normal University (Natural Sciences Edition), 2007,26(2):5.
[42]
马明卫,宋松柏.椭圆型Copulas函数在西安站干旱特征分析中的应用 [J]. 水文, 2010,30(4):36-42. Ma M W, Song S B. Application of Elliptic Copulas Function in Analysis of Drought Characteristics in Xi 'an Station [J]. Journal of China Hydrology, 2010,30(4):36-42.
[43]
Ma M W, Ren L L, Song S B, et al. Goodness-of-fit tests for multi-dimensional copulas: Expanding application to historical drought data [J]. Water Science and Engineering, 2013,6(1):18-30.