Study on the treatment of Sb(III) - containing wastewater by reduced graphene oxide supported nano zero - valent iron composites
HU Xian-zhou1, HUANG Dan-lian2
1. Changsha Environmental Protection Vocational and Technical College, Changsha 410004, China; 2. College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
Abstract:To address the problem of heavy metal Sb(III) pollution, a liquid phase reduction method was used to prepare a highly efficient reduced graphene oxide supported nano zero-valent iron composite (nZVI/rGO), and the composites were characterized using a variety of technologies. Meanwhile, the influence of loading amounts of nZVI, nZVI/rGO dosages, initial pH values, and reaction temperatures on the adsorption effect of Sb(Ⅲ) was investigated comprehensively. Furthermore, the adsorption isotherm model and the adsorption kinetics model are used to study the removal process of Sb(Ⅲ) by nZVI/rGO. The results show that with a nZVI loading capacity of 70% and a nZVI/rGO dosage of 0.5g/L at 25℃ and pH=3.0, the maximum Sb(III) removal efficiency can reach 99.7%. The adsorption mechanism is well fitted to the quasi-second-order kinetic model and the Langmuir isotherm adsorption model, thus, the nZVI/rGO was demonstrated to be an efficient composite adsorption material.
胡献舟, 黄丹莲. 还原氧化石墨烯支撑纳米零价铁对含Sb(Ⅲ)废水的处理[J]. 中国环境科学, 2022, 42(9): 4157-4165.
HU Xian-zhou, HUANG Dan-lian. Study on the treatment of Sb(III) - containing wastewater by reduced graphene oxide supported nano zero - valent iron composites. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(9): 4157-4165.
余良晖,孙国锋,姚 震.中美锑业形势对比分析与发展风险观察 [J]. 中国国土资源经济, 2019,32(9):21-26. Yu L H, Sun G F, Yao Z. Comparative analysis on the situation of antimony industry between China and the United States and observation of development risks [J]. Natural Resource Economics of China, 2019,32(9):21-26.
[2]
林星杰,苗 雨,楚敬龙,等.环保新常态下我国有色金属矿山的可持续发展 [J]. 有色金属(冶炼部分), 2021,(3):28-30. Lin X J, Miao Y, Chu J L, et al. Sustainable development of nonferrous metal mines in China under new normal of environmental protection [J]. Nonferrous Metals (Extractive Metallurgy), 2021,(3):28-30.
[3]
程 睿.铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价 [J]. 环境工程技术学报, 2020,10(2):280-287. Cheng R. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps [J]. Journal of Environmental Engineering Technology, 2020,10(2):280- 287.
[4]
吴智君,丁春光,赵文锦,等.酒石酸锑钾在雄性大鼠血液中的蓄积作用 [J]. 毒理学杂志, 2016,30(4):305-307. Wu Z J, Ding C G, Zhao W J, et al. Accumulation of antimony potassium tartrate in the blood of male rats [J]. Journal of Toxicology, 2016,30(4):305-307.
[5]
黄忠科,宋为丽.职业接触锑及其化合物生物监测指标的研究 [J]. 工业卫生与职业病, 2016,42(3):236-238. Huang Z K, Song W L. Study on biological monitoring indicators of occupational exposure to antimony and its compounds [J]. Industrial Health and Occupational Diseases, 2016,42(3):236-238.
[6]
陈育全,林毓嫱,刘薇薇,等.锑及其化合物粉尘肺沉着病的研究概况 [J]. 职业卫生与应急救援, 2015,33(6):425-428. Chen Y Q, Lin Y Q, Liu W W, et al. Research progress on thesaurosis of antimony [J]. Occupational Health and Emergency Rescue, 2015, 33(6):425-428.
[7]
何 飞,赵 龙,孙在金,等.锑对甘蓝的毒性阈值研究 [J]. 环境科学研究, 2020,33(12):2898-2905. He F, Zhao L, Sun Z J, et al. Study on antimony toxicity threshold of cabbage [J]. Research of Environmental Sciences, 2020,33(12): 2898-2905.
[8]
宋佩佩.电絮凝技术处理砷锑废水机理及多物理场数值模拟的研究 [D]. 长沙:湖南大学, 2017. Song P P. Mechanism study and numerical simulation of multiphysics involved in electrocoagulation process for arsenic and antimony removal from wastewaters [D]. Changsha: Hunan University, 2017.
[9]
梁 艳.关于离子交换法对含铬(Ⅵ)废水进行处理的研究 [J]. 科学技术创新, 2020,(17):47-48. Liang Y. Study on the treatment of chromium(VI) containing wastewater by ion exchange [J]. Scientific and Technological Innovation, 2020,(17):47-48.
[10]
Bessaies H, Iftekhar S, Asif M B, et al. Characterization and physicochemical aspects of novel cellulose-based layered double hydroxide nanocomposite for removal of antimony and fluoride from aqueous solution [J]. Journal of Environmental Sciences, 2021,102: 301-315.
[11]
Ren L F, Lin Y X, Song H C, et al. Efficient removal of antimony from aqueous solution by sustainable polymer assisted ultrafiltration process [J]. Separation and Purification Technology, 2021,263:135-140.
[12]
刘海龙,何璐红,赵 扬.重金属吸附材料的研究进展 [J]. 盐科学与化工, 2020,49(1):1-4. Liu H L, He L H, Zhao Y. Research progress in adsorption materials for heavy metals [J]. Journal of Salt Science and Chemical Industry, 2020,49(1):1-4.
[13]
李 孟,李 炜,张 帅,等.MOF及其复合材料吸附去除VOCs应用研究进展 [J]. 化工进展, 2021,40(1):415-426. Li M, Li W, Zhang S, et al. Research progress on adsorption of VOCs by MOF and its composite [J]. Chemical Industry and Engineering Progress, 2021,40(1):415-426.
[14]
谭哲亚,刘胜男.水污染中重金属的吸附净化处理研究 [J]. 环境科学与管理, 2021,46(6):100-103. Tan Z Y, Liu S N. Study on adsorption and purification of heavy metals in water pollution [J]. Environmental Science and Management, 2021,46(6):100-103.
[15]
Leechart P, Inthorn D, Thiravetyan P. Adsorption of Antimony by Bagasse Fly Ash: Chemical Modification and Adsorption Mechanism [J]. Water environment research: a research publication of the Water Environment Federation, 2016,88(9):907-912.
[16]
Tawfik A S, Ahmet S, Mustafa T. Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent [J]. Chemical Engineering Journal, 2017,307:230-238.
[17]
黄嘉慧.铁氧化物的改性与制备及其对重金属锑(Ⅲ)的吸附研究 [D]. 上海:东华大学, 2018. Huang J H. The modification and preparation of iron-based oxides and its application for the adsorption of heavy metal antimony(III) [D]. Shanghai: Donghua University, 2018.
[18]
徐冰洁.纳米零价铁去除铜冶炼废酸中砷的研究 [D]. 马鞍山:安徽工业大学, 2020. Xu B J. Removal of arsenic from copper smelting waste acid by nano zero-valent iron [D]. Maanshan: Anhui University of Technology, 2020.
[19]
Jiao C, Tan X, Lin A, et al. Preparation of activated carbon supported bead string structure nano zero valent iron in a polyethylene glycol- aqueous solution and its efficient treatment of Cr (VI) wastewater [J]. Molecules, 2020,25(1):1-15.
[20]
罗梦婷,邓红梅,张紫君,等.铁纳米线对水中Cu2+的吸附性能及机理 [J]. 环境科学研究, 2018,31(12):2146-2154. Luo M T, Deng H M, Zhang Z J, et al. Adsorption performance and mechanisms of Cu2+ from aqueous solution by Fe@Fe2O3core-shell nanowires [J]. Research of Environmental Sciences, 2018,31(12): 2146-2154.
[21]
Mortazavian S, An H, Chun D, et al. Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: Material characterizations and kinetic studies [J]. Chemical Engineering Journal, 2018,353:781-795.
[22]
Dong H, Deng J, Xie Y, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr (VI) removal from aqueous solution [J]. Journal of Hazardous Materials, 2017,332:79-86.
[23]
刘美丽,牛其建,俞洋洋,等.碳基材料负载纳米零价铁去除六价铬的研究进展 [J]. 环境科学研究, 2022,35(3):768-779. Liu M L, Niu Q J, Yu Y Y, et al. Progress in removal of hexavalent chromium by carbon-based materials loaded with nano zero-valent iron [J]. Research of Environmental Sciences, 2022,35(3):768-779.
[24]
Li J, Chen C, Zhu K, et al. Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd (II) removal [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016,59:389-394.
[25]
邢 榕.氧化石墨烯负载纳米零价铁去除有机污染物的性能及机理研究 [D]. 杭州:浙江大学, 2020. Xing R. Performances and mechanisms of GO/nZVI nanocomposites for organic pollutants removal [D]. Hangzhou: Zhejiang University, 2020.
[26]
布林朝克,朱艳华,郭 婷,等.磁性氧化石墨烯对水中Cu(Ⅱ)和Co(Ⅱ)的快速去除与吸附机理 [J]. 矿冶工程, 2021,41(4):161-165. Bulin C K, Zhu Y H, Guo T, et al. Ultrafast removal and adsorption mechanism of Cu(Ⅱ) and Co(Ⅱ) in water by magnetic graphene oxide [J]. Mining and Metallurgical Engineering, 2021,41(4):161-165.
[27]
黄文星.氧化石墨烯基复合材料的制备及其性能的研究 [D]. 南宁:广西大学, 2018. Huang W X. Study on the preparation and properties of graphene oxide-based composite [D]. Guangxi: Guangxi University, 2018.
[28]
杨秀贞.氧化石墨烯及其四氧化三铁复合物吸附水中锑(Ⅲ)的研究 [D]. 长沙:湖南大学, 2015. Yang X Z. Study on adsorption of antimony (III) from aqueous solution using graphene oxide and it’s magnetite composites [D]. Changsha: Hunan University, 2015.
[29]
赵超然.载铁氧化石墨烯/壳聚糖的制备及其对水体中砷、铬的去除 [D]. 桂林:桂林理工大学, 2020. Zhao C R. Preparation of iron-loaded graphene oxide/chitosan and its adsorption of arsenic and chromium in water. Guilin: Guilin University of Technology, 2020.
[30]
朱留佳.基于零价铁(ZVI)技术去除水中六价铬(Cr(Ⅵ))和三价锑(Sb(Ⅲ))的机理研究 [D]. 济南:山东大学, 2015. Zhu L J. Mechanisms of removing chromium or antimonite using zero-valent iron [D]. Jinan: Shandong University, 2015.
[31]
El-Dib F I, Tawfik F M, Eshaq G, et al. Remediation of distilleries wastewater using chitosan immobilized Bentonite and Bentonite based organoclays [J]. International Journal of Biological Macromolecules, 2016,86:750-755.
[32]
李卫斌.磁铁矿负载纳米零价铁和巯基功能化的MnFe2O4-MCM- 41去除三价锑废水的研究 [D]. 广州:广东工业大学, 2019. Li W B. Study on removal of Sb(III) wastewater by magnetite loaded nanoscale zero-valent iron and thiol-functionalized MnFe2O4- MCM-41. Guangzhou: Guangdong University of Technology, 2019.
[33]
谢宇雷.纳米零价铁材料对于水中Sb(Ⅲ)和Sb(Ⅴ)的去除性能及机理研究 [D]. 上海:华东理工大学, 2017. Xie Y L. Performance and mechanism of nanoscale zerovalent iron materials remove Sb(III) and Sb(V) in water [D]. Shanghai: East China University of Science and Technology, 2017.