Abstract:An inter-regional energy system optimization model, NEMO-China-MR, was constructed in this paper. Based on the economic development and energy demand differences across regions, as well as the regional resource endowments and heterogeneity in new energy development, three scenarios were designed: the reference scenario S0for steadily advancing the "carbon peaking and carbon neutrality" targets, the comprehensive scenario S1 for supply-demand coordination, and the balanced regional development scenario S2. Each scenario achieved both the "carbon peaking and carbon neutrality" targets and the transformation of energy demand while building a new power system. The scenario comparison results indicated that supply-demand coordination influenced the optimal development path of the power system. Energy storage facilities and inter-regional transmission overcame the spatial and temporal mismatches of energy resources. Scenario S1 required consideration of future grid uncertainties, while Scenario S2, which promoted healthy economic growth through balanced regional development, reduced grid transmission pressure and was identified as the most ideal development scenario for the future. Moving forward, it is essential to lead the energy system transition through high-quality economic development, construct a new power system through the coordination of electrification and low-carbon power, and build inter-regional transmission channels while promoting balanced regional development.
[1] 林伯强,占妍泓,孙传旺.面向碳中和的能源供需双侧协同发展研究 [J]. 治理研究, 2022,38(3):24-34. Lin B, Zhan Y, Sun C. A study of the coordinated development of energy supplies and the demand for carbon neutrality [J]. Governance Studies, 2022,38(3):24-34. [2] 黄 震,谢晓敏.碳中和愿景下的能源变革 [J]. 中国科学院院刊, 2021,36(9):1010-1018. Huang Z, Xie X. Energy revolution under vision of carbon neutrality [J]. Bulletin of the Chinese Academy of Sciences. 2021, 36(9):1010-1018. [3] Li M, Shan R, Virguez E, et al. Energy storage reduces costs and emissions even without large penetration of renewable energy: The case of China Southern Power Grid [J]. Energy Policy, 2022,161:112711. [4] 王春亮,宋艺航.中国电力资源供需区域分布与输送状况 [J]. 电网与清洁能源, 2015,31(1):69-74. Wang C, Song Y. Distribution of power resource demand and supply regions and power transmission in China [J]. Power System and Clean Energy, 2015,31(1):69-74. [5] 刘学良,续 继,宋炳妮.中国区域发展不平衡的历史动态、表现和成因——东西差距和南北差距的视角 [J]. 产业经济评论, 2022,(2): 152-167. Liu X, Xu J, Song B. Dynamics and causes of China’s regional development inequality: From the perspective of east-west and north-south inequality [J]. Review of Industrial Economics, 2022, (2):152-167. [6] 陈诗一,陈登科.中国资源配置效率动态演化——纳入能源要素的新视角 [J]. 中国社会科学, 2017,(4):67-83. Chen S, Chen D. Dynamic evolution of resource allocation efficiency in China: A new approach incorporating energy factors [J]. Social Sciences in China, 2017,(4):67-83. [7] Peng L, Mauzerall D L, Zhong Y D, et al. Heterogeneous effects of battery storage deployment strategies on decarbonization of provincial power systems in China [J]. Nature communications, 2023,14(1):4858. [8] Zhang S, Chen W. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework [J]. Nature communications, 2022,13(1):1-15. [9] Burandt T, Xiong B, Löffler K, et al. Decarbonizing China’s energy system-Modeling the transformation of the electricity, transportation, heat, and industrial sectors [J]. Applied Energy, 2019,255:113820. [10] 黎 博,陈民铀,钟海旺,等.高比例可再生能源新型电力系统长期规划综述 [J]. 中国电机工程学报, 2023,43(2):555-581. Li B, Chen M, Zhong H, et al. A review of long-term planning of new power systems with large share of renewable energy [J]. Proceedings of the CSEE, 2023,43(2):555-581. [11] Hu G, Ma X, Ji J. Scenarios and policies for sustainable urban energy development based on LEAP model-A case study of a postindustrial city: Shenzhen China [J]. Applied Energy, 2019,238:876-886. [12] Emodi N V, Emodi C C, Murthy G P, et al. Energy policy for low carbon development in Nigeria: A LEAP model application [J]. Renewable and Sustainable Energy Reviews, 2017,68:247-261. [13] Nieves J A, Aristizábal A J, Dyner I, et al. Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application [J]. Energy, 2019,169:380-397. [14] Handayani K, Overland I, Suryadi B, et al. Integrating 100% renewable energy into electricity systems: A net-zero analysis for Cambodia, Laos, and Myanmar [J]. Energy Reports, 2023,10:4849-4869. [15] Handayani K, Anugrah P, Goembira F, et al. Moving beyond the NDCs: ASEAN pathways to a net-zero emissions power sector in 2050 [J]. Applied Energy, 2022,311:118580. [16] c. Seasonal hydrogen storage for sustainable renewable energy integration in the electricity sector: A case study of Finland [J]. Journal of Energy Storage, 2021,44:103474. [17] Ayuketah Y, Gyamfi S, Diawuo F A, et al. Power generation expansion pathways: A policy analysis of the Cameroon power system [J]. Energy Strategy Reviews, 2022,44:101004. [18] Wambui V, Njoka F, Muguthu J, et al. Scenario analysis of electricity pathways in Kenya using low emissions analysis platform and the next energy modeling system for optimization [J]. Renewable and Sustainable Energy Reviews, 2022,168:112871. [19] Ren Z, Zhang S, Liu H, Et Al. The feasibility and policy engagements in achieving net zero emission in China’s power sector by 2050: A LEAP-REP model analysis [J]. Energy Conversion and Management, 2024,304:118230. [20] 范师嘉,许光清,赵 庆,等.考虑储能的电力系统优化与中国碳中和情景分析 [J]. 中国环境科学, 2024,44(5):2833-2846. Fan S, Xu G, Zhao Q, et al. Power System Optimization with energy storage and Carbon Neutrality Scenario Analysis of China [J]. China Environmental Science, 2024,44(5):2833-2846. [21] Wang X, Lu Z, Li T, et al. Carbon-neutral power system transition pathways for coal-dominant and renewable Resource-abundant regions: Inner Mongolia as a case study [J]. Energy Conversion and Management, 2023,285:117013. [22] Zhou W, Zhuang G, Liu L. Comprehensive assessment of energy supply-side and demand-side coordination on pathways to carbon neutrality of the Yangtze River Delta in China [J]. Journal of Cleaner Production, 2023,404:136904. [23] Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data [J]. Nature, 2020,586(7831):720-723. [24] 焦念志.研发海洋“负排放”技术支撑国家“碳中和”需求[J].中国科学院院刊, 2021,36(2):179-187. Jiao N. Developing ocean negative carbon emission technology to support national carbon neutralization [J]. Bulletin of Chinese Academy of Sciences, 2021,36(2):179-187. [25] Global CCS Institute. Global status of Ccs 2022 [EB/OL]. https://www.globalccsinstitute.com/resources/global-status-of-ccs-2022/.2024-01-31/2024-01-31. [26] 舒印彪,赵 勇,赵 良,等.“双碳”目标下我国能源电力低碳转型路径 [J]. 中国电机工程学报, 2023,43(5):1663-1672. Shu Y, Zhao Y, Zhao L, et al. Study on low carbon energy transition path toward carbon peak and Carbon Neutrality [J]. Proceedings of the CSEE, 2023,43(5):1663-1672. [27] 国网能源研究院有限公司.中国能源电力发展展望2022 [M]. 北京:中国电力出版社, 2022. State Grid Energy Research Institute Co., Ltd. Outlook for China’s energy and electricity development in 2022 [M]. Beijing: China Electric Power Press, 2022. [28] COP, IRENA, GRA. Tripling renewable power and doubling energy efficiency by 2030: Crucial steps towards 1.5℃ [R]. Abu Dhabi: International Renewable Energy Agency, 2023. [29] 全球能源互联网发展合作组织.中国2060年前碳中和研究报告 [M]. 北京:中国电力出版社, 2021. GEIDCO. Research report on carbon neutrality in China before 2060 [M]. Beijing: China Electric Power Press, 2021. [30] 刘一鸣,杨静萱,刘 青.中国人口发展的空间格局研究——基于“七普”数据的实证 [J]. 统计与决策, 2024,40(2):78-82. Liu Y, Yang J, Liu Q. Study on spatial pattern of population development in China — An empirical study based on the data of the Seventh National Census [J]. Statistics & Decision, 2024,40(2): 78-82. [31] 陈 卫.中国人口负增长与老龄化趋势预测 [J]. 社会科学辑刊, 2022,(5):133-144. Chen W. Forecasting negative population growth and population ageing in China [J]. Social Science Journal, 2022,(5):133-144. [32] Zheng H, Többen J, Dietzenbacher E, et al. Entropy-based Chinese city-level MRIO table framework [J]. Economic Systems Research, 2022,34(4):519-544. [33] IEA. IEA energy and emissions per value added database [EB/OL]. https://www.iea.org/data-and-statistics/data-product/energy-and-emissions-per-value-added-database. 2024-01-31/2024-01-31. [34] 徐 志,马 静,贾金生,等.水能资源开发利用程度国际比较 [J]. 水利水电科技进展, 2018,38(1):63-67. Xu Z, Ma J, Jia J, et al. International comparison of hydropower resources development [J]. Advances in Science and Technology of Water Resources, 2018,38(1):63-67. [35] 舒印彪,张丽英,张运洲,等.我国电力碳达峰、碳中和路径研究 [J]. 中国工程科学, 2021,23(6):1-14. Shu Y, Zhang L, Zhang Y, et al. Carbon peak and carbon neutrality path for China’s power industry [J]. Strategic Study of CAE, 2021, 23(6):1-14. [36] 李 明,郑云平,亚夏尔·吐尔洪,等.新型储能政策分析与建议 [J]. 储能科学与技术, 2023,12(6):2022-2031. Li M, Zheng Y, Arthur T, et al. Analysis and suggestions on new energy storage policy [J]. Energy Storage Science and Technology, 2023,12(6):2022-2031. [37] 电力规划设计总院.火电工程限额设计参考造价指标(2021年水平) [M]. 北京:中国电力出版社, 2022. Electric Power Planning and Design Institute. Reference cost indicators for quota design of thermal power engineering (2021 level) [M]. Beijing: China Electric Power Press, 2022. [38] 电力规划设计总院,水电水利规划设计总院.中国电力技术经济发展研究报告2021 [M]. 北京:人民日报出版社, 2021. Electric Power Planning and Design Institute, Hydropower and Water Resources Planning and Design Institute. Research report on the development of China’s electric power technology and economy in 2021 [M]. Beijing: People’s Daily Press, 2021. [39] 中国电力企业联合会.中国电力行业造价管理年度发展报告2022 [M]. 北京:中国建材工业出版社, 2022. CEC. Annual development report on cost management in China’s electric power industry [M]. Beijing: China Architecture & Building Press, 2022. [40] Stehly T, Duffy P. 2021 Cost of Wind Energy Review [EB/OL]. https://www.nrel.gov/docs/fy23osti/84774.pdf. 2024-01-31/2024-01-31. [41] 中国光伏行业协会.中国光伏产业发展路线图(2021年版) [EB/OL]. http://www.chinapv.org.cn/road_map/1016.html. 2024-01-31/2024-01-31. China Photovoltaic Industry Association. China PV industry development roadmap (2021) [EB/OL].http://www.chinapv.org.cn/road_map/1016.html. 2024-01-31/2024-01-31. [42] 水电水利规划设计总院,中国水力发电工程学会抽水蓄能行业分会.抽水蓄能产业发展报告2022 [M]. 北京:中国水利水电出版社, 2023. Electric Power Planning and Design Institute, Pumped Storage Industry Branch of China Hydropower Engineering Society. Report on the development of pumped storage industry (2022) [M]. Beijing: China Water & Power Press, 2023. [43] Viswanathan V, Franks K M R, Li X, et al. 2022 Grid energy storage technology cost and performance assessment [EB/OL]. https://www.pnnl.gov/sites/default/files/media/file/ESGC%20Cost%20Performance%20Report%202022%20PNNL-33283.pdf. [44] 张玮灵,古 含,章 超,等.压缩空气储能技术经济特点及发展趋势 [J]. 储能科学与技术, 2023,12(4):1295-1301. Zhang W, Gu H, Zhang C, et al. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023,12(4):1295-1301. [45] 侯金鸣,孙 蔚,肖晋宇,等.电力系统关键技术进步与低碳转型的协同优化 [J]. 电力系统自动化, 2022,46(13):1-9. Hou J, Sun W, Xiao J, et al. Collaborative optimization of key technology progress and low-carbon transition of power systems [J]. Automation of Electric Power Systems, 2022,46(13):1-9. [46] 刘志强,赵 毅,潘 荔.中外火电节能减排效率分析与比较 [J]. 热力发电, 2021,50(3):9-18. Liu Z, Zhao Y, Pan L. Analysis and comparison of energy saving efficiency and emission reduction efficiency of thermal power between China and foreign countries [J]. Thermal Power Generation, 2021,50(3):9-18. [47] 刘子郡,韩奎华,刘江伟,等.基于TRIZ理论的生物质发电技术发展趋势分析 [J]. 山东电力技术, 2022,49(11):78-83. Liu Z, Han K, Liu J, et al. Development trend analysis of biomass power generation technology based on TRIZ theory [J]. Shandong Electric Power, 2022,49(11):78-83. [48] Kostarev V S, Tashlykov O L, Klimova V A. The increasing of the energy efficiency of nuclear power plants with fast neutron reactors by utilizing waste heat using heat pumps [C]//.IOP Conference Series: Materials Science and Engineering: IOP Publishing, 2019:12022. [49] Wang J, Chen L, Tan Z, et al. Inherent spatiotemporal uncertainty of renewable power in China [J]. Nature Communications, 2023,14(1):5379. [50] Wang Y, Wang R, Tanaka K, et al. Accelerating the energy transition towards photovoltaic and wind in China [J]. Nature, 2023,619(7971): 761-767. [51] 中华人民共和国水利部.中国水文年报2022 [M]. 北京:中国水利水电出版社, 2023. Ministry of Water Resources People’s Republic of China. China hydrological yearbook 2022 [M]. Beijing: China Water & Power Press, 2023. [52] Wang Y, Chao Q, Zhao L, et al. Assessment of wind and photovoltaic power potential in China [J]. Carbon Neutrality, 2022,1(1):15. [53] Wang T, Wang Y, Wang K, et al. Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation [J]. Applied Energy, 2024,356:122326. [54] Kang Y, Yang Q, Bartocci P, et al. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials [J]. Renewable and Sustainable Energy Reviews, 2020,127:109842.