Characteristics of photochemical pollution and sources analysis of atmospheric volatile organic compounds in the regional background station of Hainan
LIN You-jing1, YAN Wei-jun1, XU Wen-shuai1, DU Chuan-dong1, WANG Bo-guang2, GONG Dao-cheng2, LI Qin-qin2, SHENG Hui1, MENG Xin-xin1
1. Hainan Ecological Environmental Monitoring Center, Haikou 571126, China; 2. Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
Abstract:The regional background site in Hainan Province is located in the northeastern part of Hainan Province and serves as an important site along the atmospheric transport pathway in tropical regions in China. This study conducted online observations of photochemical pollutants (O3, PAN) and their precursors VOCs from August to December 2021 at the regional background site. The study analyzed the characteristics and trends of photochemical pollution, the composition of VOCs, ozone formation potential (OFP), and chemical reactivity (L·OH), and utilized PSCF and PMF methods to investigate the sources of VOCs. The results indicated that the concentration levels of ambient air pollutants at the regional background site in Hainan were relatively low. However, when northerly winds prevailed as the dominant wind direction, concentrations of various pollutants increased. O3 was generated during the day and accumulated at night under the influence of meteorological conditions, leading to photochemical pollution. The average concentration (volume fraction) of photochemical precursor VOCs during the observation period was 7.21×10-9±4.60×10-9, with concentrations of various types of VOCs ranked from highest to lowest as alkanes>OVOC>aromatics>alkenes>alkynes. Pollutant concentrations were significantly higher during pollution periods compared to clean periods. Analysis of VOCs reactivity revealed that OVOC and alkenes were the main contributors to photochemical reactions. High-value areas of potential sources of precursors, PAN, and O3 during pollution periods were mainly distributed in the developed coastal areas from the Pearl River Delta to the southeast of Fujian. According to the results obtained using PMF source analysis model, this regional background site was significantly influenced by anthropogenic sources, with vehicular exhaust emissions (37.8% to 46.2%) being an important contributor to O3 pollution in Hainan.
林尤静, 颜为军, 徐文帅, 杜传东, 王伯光, 龚道程, 李勤勤, 盛慧, 孟鑫鑫. 海南区域背景点光化学污染特征及VOCs来源解析[J]. 中国环境科学, 2024, 44(5): 2418-2430.
LIN You-jing, YAN Wei-jun, XU Wen-shuai, DU Chuan-dong, WANG Bo-guang, GONG Dao-cheng, LI Qin-qin, SHENG Hui, MENG Xin-xin. Characteristics of photochemical pollution and sources analysis of atmospheric volatile organic compounds in the regional background station of Hainan. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(5): 2418-2430.
[1] 赵伟,高博,卢清,等.2006~2019年珠三角地区臭氧污染趋势[J].环境科学, 2021,42(1):97-105. Zhao W, Gao B, Lu Q, et al. Ozone pollution trend in the Pearl River delta Region During 2006~2019[J]. Environmental Science, 2021, 42(1):97-105. [2] 王玫,郑有飞,柳艳菊,等.京津冀臭氧变化特征及与气象要素的关系[J].中国环境科学, 2019,39(7):2689-2698. Wang M, Zheng Y F, Liu Y J, et al. Characteristics of ozone and its relationship with meteorological factors in Beijing-Tianjin-Hebei Region[J]. China Environmental Science, 2019,39(7):2689-2698. [3] 肖建军,汪太明,王业耀,等.中国自然背景地区臭氧浓度时空变化特征分析[J].环境科学研究, 2022,35(9):2128-2135. Xiao J J, Wang T M, Wang Y Y, et al. Analysis of ozone time series variation in atmospheric background area in China[J]. Research of Environmental Sciences, 2022,35(9):2128-2135. [4] Wang Y, Bastien L, Jin L, et al. Location-specific control of precursor emissions to mitigate photochemical air pollution[J]. Environmental Science&Technology, 2023,57(26):9693-9701. [5] 周婕萍,袁斌,彭钰雯,等.珠三角冬季臭氧污染成因分析——以2020年1月一次污染过程为例[J].中国环境科学, 2023,43(5):2198-2209. Zhou J P, Yuan B, Peng Y W, et al. Causes of ozone pollution in the Pearl River Delta in Winter-A case study of pollution process in January 2020[J]. China Environmental Science, 2023,43(5):2198-2209. [6] 唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社, 2006:116-123. Tang X Y, Zhang Y H, Shao M. Atmospheric chemistry[M]. Beijing:Higher Education Press, 2006:116-123. [7] Wang Y, Liu T, Gong D C, et al. Anthropogenic pollutants induce changes in peroxyacetyl nitrate formation intensity and pathways in a mountainous background atmosphere in Southern China[J]. Environmental Science&Technology, 2023,57(15):6253-6262. [8] 苏彬彬,许椐洋,张若宇,等.区域传输对华东森林及高山背景点位大气污染物浓度的影响[J].环境科学, 2014,35(8):2871-2877. Su B B, Xu J Y, Zhang R Y, et al. Influence of atmospheric transport on air pollutant levels at a mountain background site of East China[J]. Environmental Science, 2014,35(8):2871-2877. [9] 肖龙,王帅,周颖,等.中国典型背景站夏季VOCs污染特征及来源解析[J].中国环境科学, 2021,41(5):2014-2027. Xiao L, Wang S, Zhou Y, et al. The characteristics and source apportionments of VOCs at typical background sites during summer in China[J]. China Environmental Science, 2021,41(5):2014-2027. [10] Han T T, Ma Z Q, Li Y R, et al. Chemical characteristics and source apportionments of volatile organic compounds (VOCs) before and during the heating season at a regional background site in the North China Plain[J]. Atmosphere Research, 2021,262. [11] Xu Y, Yan Y L, Duan X L, et al. Diurnal variation and source analysis of NMHCs at a background site of Nam Co (4,730m a.s.l.) in the interior area of Tibetan Plateau[J]. Atmospheric Pollution Research, 2022,13(9):101520. [12] 符传博,徐文帅,丹利,等.2015~2020年海南省臭氧时空变化及其成因分析[J].环境科学, 2022,43(2):675-685. Fu C B, Xu W S, Dan L, et al. Temporal and spatial variations in ozone and its causes over hainan Province from 2015 to 2020[J]. Environmental Science, 2022,43(2):675-685. [13] 谢文晶,邢巧,谢东海,等.海南省背景区域臭氧及其前体物污染特征[J].环境科学, 2022,43(12):5407-5420. Xie W J, Xing Q, Xie D H, et al. Pollution characteristics of ozone and its precursors in background region of Hainan Province[J]. Environmental Science, 2022,43(12):5407-5420. [14] 符传博,丹利,佟金鹤.2017年秋季海口市一次持续空气污染过程特征及成因分析[J].环境化学, 2021,(4):1048-1058. Fu C B, Dan L, Tong J H. Characteristics and source analysis of a multi-day air pollution episode in Haikou City in autumn 2017[J]. Environmental Chemistry, 2021,(4):1048-1058. [15] 符传博,丹利,刘丽君,等.2019年秋季三亚市一次典型臭氧污染个例气象成因解析[J].生态环境学报, 2022,31(1):89-99. Fu C B, Dan L, Liu L J, et al. Characteristics of a typical ozone pollution event and its meteorological reason in Sanya City in Autumn 2019[J]. Ecology and Environment, 2022,31(1):89-99. [16] HJ 1010-2018环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法[S]. HJ 1010-2018 Specifications and test procedures for ambient air quality continuous monitoring system with gas chromatography for volatile organic compounds[S]. [17] WPL Carter. Development of ozone reactivity scales for volatile organic compounds[J]. Air&Waste, 1994,44(7):881. [18] Draxler R R, Hess G D, Draxler R R. Description of the HYSPLIT_4 modeling system[C]//National Oceanic&Atmospheric Administration Technical Memorandum Erl Arl. 1997:197-199. [19] Hopke P K, Barrie L A, Li S M, et al. Possible sources and preferred pathways for biogenic and non-sea-salt sulfur for the high Arctic[J]. Journal of Geophysical Research Atmospheres, 1995, 100(D8):16595-16603. [20] Yuan B, Shao M, Joost de G, et al. Volatile organic compounds (VOCs) in urban air:How chemistry affects the interpretation of positive matrix factorization (PMF) analysis[J]. Journal of Geophysical Research-Atmospheres, 2012,117(D24). [21] 高天翔,姚颖惠,文海军,等.2019进博会期间上海大气挥发性有机物污染特征和来源解析[J].复旦学报(自然科学版), 2022,61(6):812-820. Gao T X, Yao Y H, Wen H J, et al. Characteristics and source analysis of atmospheric volatile organic compounds in Shanghai during the 2019 CIIE[J]. Journal of Fudan University (Natural Science), 2022,61(6):812-820. [22] GB 3095-2012环境空气质量标准[S]. GB 3095-2012 Ambient air quality standard[S]. [23] Wu F K, Yu Y, Sun J, et al. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China[J]. Science of the Total Environment, 2016,548:347-359. [24] 白阳,白志鹏,李伟.青藏高原背景站大气VOCs浓度变化特征及来源分析[J].环境科学学报, 2016,36(6):2180-2186. Bai Y, Bai Z P, Li W. Characteristics and sources analysis of atmospheric volatile organic compounds in the Tibetan Plateau[J]. Acta Scientiae Circumstantiae, 2016,36(6):2180-2186. [25] 吴方堃,孙杰,余晔,等.长白山背景站大气VOCs浓度变化特征及来源分析[J].环境科学, 2016,37(9):3308-3314. Wu F K, Sun J, Yu Y, et al. Variation characteristics and sources analysis of atmospheric volatile organic compounds in Changbai Mountain Station[J]. Environmental Science, 2016,37(9):3308-3314. [26] 张军科,王跃思,吴方堃,等.贡嘎山本底站大气中VOCs的研究[J].环境科学, 2012,33(12):4159-4166. Zhang J K, Wang Y S, Wu F K, et al. Study on Atmospheric VOCs in Gongga Mountain Base Station[J]. Chinese Journal of Environmental Science, 2012,33(12):4159-4166. [27] 周毕安,胡君,奇奕轩,等.北京怀柔夏季大气中的VOCs及其对O3和SOA的生成贡献[J].中国科学院大学学报, 2023,40(1):39-49. Zhou B A, Hu J, QI Y X, et al. Atmospheric VOCs and their contribution to O3and SOA formation in summer of Huairou District, Beijing City[J]. Journal of University of Chinese Academy of Sciences, 2023,40(1):39-49. [28] 银媛媛,文建辉,张旭峰.桂林市城区大气VOCs污染特征及对O3和SOA的生成潜势[J].中国环境监测, 2020,36(4):29-35. Yin Y Y,Wen J H, Zhang X F. Pollution characteristics of ambient VOCs and its formation potential to ozone and secondary organic aerosol in Guilin City[J]. Environmental Monitoring in China, 2020,36(4):29-35. [29] 虞小芳,程鹏,古颖纲,等.广州市夏季VOCs对臭氧及SOA生成潜势的研究[J].中国环境科学, 2018,38(3):830-837. Yu X F, Cheng P, Gu Y G, et al. Formation potential of ozone and secondary organic aerosol from VOCs oxidation in summer in Guangzhou, China[J]. China Environmental Science, 2018,38(3):830-837. [30] 宋锴,俞颖,陆思华,等.珠海市秋季大气挥发性有机物变化趋势和大气化学反应活性[J].环境科学学报, 2020,40(7):2323-2332. Song K, Yu Y, Lu S H, et al. Variation and reactivity of ambient volatile organic compounds (VOCs) in autumn of Zhuhai[J]. Acta Scientiae Circumstantiae, 2020,40(7):2323-2332. [31] 曹小聪,吴晓晨,徐文帅,等.三亚市大气VOCs污染特征、臭氧生成潜势及来源解析[J].环境科学研究, 2021,34(8):1812-1824. Cao X C, Wu X C, Xu W S, et al. Pollution characterization, ozone formation potential and source apportionment of ambient VOCs in Sanya, China[J]. Research of Environmental Sciences, 2021,34(8):1812-1824. [32] 周炎,陈多宏,林玉君,等.广东省春季一次区域臭氧污染过程的成因分析[J].环境科学学报, 2023,43(1):161-170. Zhou Y, Chen D H, Lin Y J, et al. Analysis of an ozone pollution process in spring in Guangdong Province[J]. Acta Scientiae Circumstantiae, 2023,43(1):161-170. [33] Xue L K, Wang T, Wang X F, et al. On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation[J]. Environmental Pollution, 2014,195:39-47. [34] 周炎,岳玎利,钟流举,等.广东鹤山地区夏季大气中PAN污染特征[J].环境监测管理与技术, 2013,25(4):24-27. Zhou Y, Yue D L, Zhong L J, et al. Properties of atmospheric PAN pollution in Heshan during summer time[J]. The Administration and Technique of Environmental Monitoring, 2013,25(4):24-27. [35] 蒋朝晖,王玉娇,郑玄,等.张家界森林大气中醛酮类化合物浓度变化特征[J].环境科学研究, 2016,29(9):1272-1278. Jiang Z H, Wang Y J, Zheng X, et al. Variation characteristics of atmospheric carbonyl compounds in Zhangjiajie forest[J]. Research of Environmental Sciences, 2016,29(9):1272-1278. [36] 符传博,徐文帅,丹利,等.前体物与气象因子对海南省臭氧污染的影响[J].环境科学与技术, 2020,43(7):45-50. Fu C B, Xu W S, Dan L, et al. Impacts of precursors and meteorological factors on ozone pollution in Hainan Province[J]. Environmental Science&Technology, 2020,43(7):45-50. [37] 任义君,马双良,王思维,等.郑州市春季大气污染过程VOCs特征、臭氧生成潜势及源解析[J].环境科学, 2020,41(6):2577-2585. Ren Y J, Ma S L, Wang S W,et al. Ambient VOCs characteristics, ozone formation potential, and source apportionment of air pollution in spring in Zhengzhou[J]. Environmental Science, 2020,41(6):2577-2585. [38] Bai J H, Wang M X, Hu Fei, et al. The primary research on the biogenic volatile organic compounds[J]. Climatic and Environmental Research, 2003,8(2):180-187. [39] 林理量,程勇,曹礼明,等.深圳臭氧污染日的VOCs组成与来源特征[J].中国环境科学, 2021,41(8):3484-3492. Lin L L, Cheng Y, Cao L M, et al. The characterization and source apportionment of VOCs in Shenzhen during ozone polluted period[J]. China Environmental Science, 2021,41(8):3484-3492. [40] Wang P, Liu Y M, Dai J N, et al. Isoprene emissions response to drought and the impacts on ozone and SOA in China[J]. Journal of Geophysical Research-Atmospheres, 2021,126(10):1-14. [41] Song J W, Zhang Y Y, Zhang Y L, et al. A case study on the characterization of non-methane hydrocarbons over the South China Sea:Implication of land-sea air exchange[J]. Science of The Total Environment, 2020,717:134754. [42] 陈天增,葛艳丽,刘永春,等.我国机动车排放VOCs及其大气环境影响[J].环境科学, 2018,39(2):478-492. Chen T Z, Ge Y L, Liu Y C, et al. VOCs Emission from Motor Vehicles in China and Its Impact on the Atmospheric Environment[J]. Environmental Science, 2018,39(2):478-492. [43] 周炎,岳玎利,张涛.春季广州城区空气中VOCs来源解析[J].环境监控与预警, 2017,9(1):42-47. Zhou Y, Yue D L, Zhang T. Source apportionment of spring ambient volatile organic compounds in Guangzhou[J]. Environmental Monitoring and Forewarning, 2017,9(1):42-47. [44] Lau A K H, Yuan Z B, Yu J Z, et al. Source apportionment of ambient volatile organic compounds in Hong Kong[J]. Science of the Total Environment, 2010,408(19):4138-4149. [45] 罗瑞雪,刘保双,梁丹妮,等.天津市郊夏季的臭氧变化特征及其前体物VOCs的来源解析[J].环境科学, 2021,42(1):75-87. Luo R X, Liu B S, Liang D N, et al. Characteristics of ozone and source apportionment of the precursor VOCs in Tianjin suburbs in summer[J]. Environmental Science, 2021,42(1):75-87. [46] Liu Y, Shao M, Fu L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China:Part I[J]. Atmospheric Environment, 2008,42(25):6247-6260. [47] Wang M, Qin W, Chen W T, et al. Seasonal variability of VOCs in Nanjing, Yangtze River delta:Implications for emission sources and photochemistry[J]. Atmospheric Environment, 2020,223:117254. [48] Ling Z H, Guo H. Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong[J]. Environmental Science&Policy, 2014,38:180-191.