Distribution of soil protozoan communities in LhamuLhacuo and its driving factors
LI Ming-yan1, HUANG Qian2, LI Tian-shun1, ZHU Wen-jin1, LIAO Zi-xing1, SUO Nan-cuo1, PU Bu1
1. Plateau Zoology Laboratory, Ecological Environment College, Tibet University, Lhasa 850000, China; 2. College of Life Sciences, Hebei University, Baoding 071002, China
Abstract:In order to explore the community structure and construction mechanism of soil protozoa in Lhamu Lhacuo National Wetland Park, 24 large samples were set up in July 2023 according to the geographical and habitat characteristics in the study using the plum blossom five-point sampling method with a total of 120 soil samples. The culture and morphological identification of soil protozoa were performed by non-submerged culture method and in vivo observation method. The quantitative study was conducted by Petri dish direct counting method. A total of 175 soil protozoa species were identified, belonging to 12 classes, 29 orders, 55 families and 91 genera, mainly composed by species of Zoomastigophorea accounting for 15.43% of the total species, and species of Heliozoea was the least, accounting for 1.14% of the total species only. The α diversity of soil protozoa community in Lhamu Lhacuo National Wetland Park. had no significant difference between slopes (P>0.05), and the Shannon-Wiener diversity index and Simpson dominance index at low, middle and high altitudes were significantly different from those at high altitude(P<0.05). In the co-occurrence network analysis, the relationships between soil protozoan communities in different slope aspects and at different altitudes are mainly positively correlated. Altitude, pH value, soil water content, soil organic matter, available potassium, and vegetation coverage are the main soil environmental factors that affect the composition of soil protozoan communities. The results of this study are helpful for evaluating and monitoring the changes in the soil environmental quality of the Lhamu Lhacuo National Wetland Park, and can provide basic theoretical data for the protection of soil ecological functions and the sustainable development in the Tibet region.
李明燕, 黄倩, 李天顺, 朱文琎, 廖紫星, 索南措, 普布. 拉姆拉错土壤原生动物群落分布及其驱动因素[J]. 中国环境科学, 2025, 45(3): 1517-1528.
LI Ming-yan, HUANG Qian, LI Tian-shun, ZHU Wen-jin, LIAO Zi-xing, SUO Nan-cuo, PU Bu. Distribution of soil protozoan communities in LhamuLhacuo and its driving factors. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(3): 1517-1528.
[1] Lehmann J, Bossio D A, Kgel-Knabner I, et al. The concept and future prospects of soil health[J]. Nature Reviews Earth& Environment, 2020,1(10):1-10. [2] 黄倩,李明燕,朱时应,等.西藏麦地卡湿地三个核心区土壤纤毛虫群落特征及其影响因素[J].生物资源, 2024,46(1):51-60. Huang Q, Ling M Y, Zhu S Y, et al. Characteristics of soil ciliate community and its influencing factors in three core areas of Mitika Wetland in Xizang[J]. Biotic Resources, 2024,46(1):51-60. [3] 赵峰,徐奎栋.土壤原生动物研究方法[J].生态学杂志, 2010, 29(5):1028-1034. Zhao F, Xu K D. Methodological advances in soil protozoa research[J]. Chinese Journal of Ecology, 2010,29(5):1028-1034. [4] 石妮,马斯琳,陈雯莉,等.原生动物-病原菌互作与土壤健康综述[J].农业环境科学学报, 2023,42(3):481-489. Shi N, Ma S L, Chen W L, et al. Protozoa-pathogen interactions and soil health:A review[J]. Journal of Agro-Environment Science, 2023, 42(3):481-489. [5] 韦中,宋宇琦,熊武,等.土壤原生动物--研究方法及其在土传病害防控中的作用[J].土壤学报, 2021,58(1):14-22. Wei Z, Song Y Q, Xiong W, et al. Soil protozoa:Research methods and roles in the biocontrol of soil-borne diseases[J]. Acta Pedologica Sinica, 2021,58(1):14-22. [6] Hu Y L, Wang S L, Yan S K. Research advances on the factors influencing the activity and community structure of soil microorganism[J]. Chinese Journal of Soil Science, 2006. [7] Foissner W. Soil protozoa as bioindicators:Pros and cons, methods, diversity, representative examples[J]. Agriculture Ecosystems& Environment, 1999,74(1):95-112. [8] 宁应之,周小燕,烟郑杰,等.土壤纤毛虫群落对退牧还草生态恢复的响应-以玛曲县为例[J].生态学报, 2020,40(7):2386-2395. Ning Y Z, Zhou X Y, Yan Z J, et al. Response of soil ciliates community to ecological restoration after the implementation of returning grazing to grasslands project:a case study of Maqu county, Gansu province[J]. Acta Ecologica Sinica, 2020,40(7):2386-2395. [9] Chen L Y, Dong J Y, Wu W N, et al. Morphology and molecular phylogeny of a new hypotrich ciliate, Anteholosticha songi nov. spec., and an American population of Holosticha pullaster (Müller, 1773) Foissner et al., 1991(Ciliophora, Hypotrichia)[J]. European Journal of Protistology, 2020,72:125646. [10] 朱时应,黄倩,王壮壮,等.西藏康马县草地土壤纤毛虫多样性及其与环境因子的相关性分析[J].环境生态学, 2022,4(7):55-61. Zhu S Y, Huang Q, Wang Z Z. Analysis of soil ciliate diversity and its relationship with environmental factors in Kangma County, Tibet[J]. Environmental Ecology, 2022,4(7):55-61. [11] 黄倩,朱时应,李天顺,等.西藏热振国家森林公园土壤原生动物群落沿海拔分布格局及其与环境因子的关联特征[J].生态环境学报, 2024,33(4):499-508. Huang Q, Zhu S Y, Li T S, Distribution pattern of soil protozoa community along altitude and its correlation with environmental factors in Rating National Forest Park in Tibet, China[J]. Ecology and Environmental Sciences, 2024,33(4):499-508. [12] 黄倩,朱时应,李明燕,等.年楚河流域沙棘林土壤纤毛虫群落特征及环境因子相关性[J].干旱区资源与环境, 2024,38(5):152-162. Huang Q, Zhu S Y, Li M Y, et al. Soil ciliate community structure and relationship with environmental factors in sea buckthorn forest in Nianchu river basin[J]. Journal of Arid Land Resources and Environment, 2024,38(5):152-162. [13] 姜传奇,谷思雨,安瑞志,等.西藏温泉两种中国新记录纤毛虫第一双小核草履虫和明布雷斯四膜虫的形态学和系统发育学研究[J].水生生物学报, 2020,44(1):197-205. Jang C Q, Gu S Y, An R Z, et al. Morphology and phylogeny of two newly recorded ciliates (paramecium primaurelia and tetrahymena mimbres) from Tibetan hot springs china[J]. Acta Hydrobiologica Sinica, 2020,44(1):197-205. [14] 朱时应,王壮壮,黄倩,等.西藏年楚河流域湿地土壤纤毛虫群落特征[J].生态学报, 2022,42(22):9005-9016. Zhu S Y, Wang Z Z, Huang Q, et al. Characteristics of soil ciliate community in wetland of the Nianchu River Basin, Tibet, China[J]. Acta Ecologica Sinica, 2022,42(22):9005-9016. [15] 杨清,李晓东,杨胜娴,等.雅鲁藏布江中游丰水期原生动物群落多样性及其影响因子[J].生物多样性, 2023,31(4):100-115. Yang Q, Li X D, Yang S X, et al. Protozoan community diversity and its impact factor in the middle reaches of the Yarlung Zangbo River in the wet season[J]. Biodiversity Science, 2023,31(4):100-115. [16] 杨清,张鹏,安瑞志,等.拉萨河中下游纤毛虫群落时空分布模式及其驱动机制[J].生物多样性, 2022,30(6):136-150. Yang Q, Zhang P, An R Z, et al. Spatial and temporal distribution patterns and driving mechanisms of ciliatecommunities in the midstream and downstream reaches of the Lhasa River[J]. Biodiversity Science, 2022,30(6):136-150. [17] 张鹏,刘洋,安瑞志,等.西藏拉萨河中下游原生动物优势种时空生态位[J].林业科学, 2022,58(1):78-88. Zhang P, Liu Y, An R Z, et al. Spatio-temporal niche of dominant protozoa species in the midstream and downstream of Lhasa River, Tibet, China[J]. Scientia Silvae Sinicae, 2022,58(1):78-88. [18] 郑梦瑶,李媛,王雪蓉,等.芦芽山不同植被类型土壤原生动物群落构建机制[J].生物多样性, 2024,32(4):50-59. Zheng M Y, Li Y, Wang X R, et al. Soil protozoa community assembly mechanism in different vegetation types of Luya Mou[J]. Biodiversity Science, 2024,32(4):50-59. [19] 田尊师.高通量测序技术在土壤微食物网研究中的应用[J].哈尔滨师范大学自然科学学报, 2023,39(5):90-94. Tian Z S, Application of high-throughput sequencing technology in soil micro-food web research[J]. Natural Science Journal of Harbin Normal University, 2023,39(5):90-94. [20] 王有鑫,吴志刚,赵培栋,等.西藏高原河流底栖动物研究进展[J].高原科学研究, 2024,8(1):39-48. Wang Y X, Wu Z G, Zhao P D, et al. Research progress of river zoobenthos in the Tibetan Plateau[J]. Plateau Science Research, 2024, 8(1):39-48. [21] 王纤纤.雅鲁藏布江流域着生藻类群落结构时空分布特征及与水体理化因子的关系[D].华中农业大学, 2022. Wang X X. Spatial-temporal distribution characteristics of community structure periphytic algae and its relationship with physicochemical factors of water environment in the Yarlung Zangbo River Basin[D]. Huazhong Agricultural University, 2022. [22] 藏旺堆.加查县志[M].中国藏学出版社, 2010:1-2. Zang W D. Records of Gyaca County of Tibet[M]. China Tibetology Publishing House, 2010:1-2. [23] 宁应之,徐富荣,王婷婷.庆阳市庆城县退耕还林区土壤纤毛虫群落特征[J].生态环境学报, 2020,29(3):506-515. Ning Y Z, Xu F R, Wang T T. Community characteristics of soil ciliates in forestlands converted from cultivated lands in Qingcheng County, Qingyang City[J]. Ecology and Environmental Sciences, 2020,29(3):506-515. [24] 宁应之,张惠茹,王芳国,等.模拟氮沉降对高寒草甸土壤纤毛虫群落的影响[J].生态环境学报, 2018,27(1):1-9. Ning Y Z, Zhang H R, Wang F G, et al. Effects of simulated nitrogen deposition on soil ciliates community in alpine meadow of Northwest China[J]. Ecology and Environmental Sciences, 2018, 27(1):1-9. [25] Foissner W. Estimating the species richness of soil protozoa using the"non-flooded petridish method"[C]//Lee JJ, Soldos. Protocols in Protozoology. Lawrence:Allen Press:10.1-10.2. [26] Wilber N. Eine verbesserte technink der protargolimpragnation für ciliaten[J]. Mikrokosmos, 1975,64:171-179. [27] Lynn D. The ciliated Protozoa:Characterization, classification, and guide to the literature[M]. 3rd ed. New York:Springer, 2010. [28] 宁应之,沈小亚,张惠茹,等.甘肃天水市退耕还林区土壤纤毛虫群落多样性[J].西北师范大学学报(自然科学版), 2022,58(2):81-89. Ning Y Z, Shen X Y, Zhang H R, et al. Community diversity of soil ciliates in the area of returning farmland to forest in Tianshui City, Gansu[J]. Journal of Northwest Normal University (Natural Science), 2022,58(2):81-89. [29] 张珂,左鑫钰,胡娅丽,等.塞罕坝不同植被类型地表土壤动物群落特征[J].林业与生态科学, 2022,37(3):223-237. Zhang K, Zuo X Y, Hu Y L, et al. Community structure of soil fauna of different vegetation types in Saihanba[J]. Forestry and ecological sciences, 2022,37(3):223-237. [30] 闫丰,赵鑫,邵丽君,等.冀北采石场恢复区不同植被恢复类型对土壤微生物群落结构的影响[EB/OL].环境科学, 1-16[2024-12-16] . https://doi.org/10.13227/j.hjkx.202402063. Yan F, Zhao X, Shao L J, et al. Inpact of different vegetation restoration types on soil microbial community structure in the restoration area of quarries in Northern Hebei Province[EB/OL]. Environmental Science, 1-16[2024-12-16] . https://doi.org/10.13227/j.hjkx.202402063. [31] 裴广廷,李夏,贺同鑫,等.广西喀斯特石漠化区不同植被恢复模式下土壤微生物多样性与群落结构特征及驱动因素分析[J].地理科学, 2024,44(9):1630-1642. Pei G T, Li X, He T X, et al. Characteristics of soil microbial diversity and community structure under different revegetation types in karst rocky desertificationareas and analysis of driving factors[J]. Scientia Geographica Sinica, 2024,44(9):1630-1642. [32] 徐仁飞,王璐,邓磊,等.高寒沙区不同恢复年限青杨人工林土壤碳氮水变化特征[J].应用生态学报, 2024,35(10):2657-2666. Xu R F, Wang L, Deng L, et al. Characteristics of soil carbon, nitrogen, and water of Populus cathayana plantation along different vegetation restoration years in alpine sandy region[J]. Chinese Journal of Applied Ecology, 024,35(10):2657-2666. [33] Shu W S, Huang L N. Microbial diversity in extreme environments.[J]. Nature Reviews. Microbiology, 2022,(4):20. [34] 张克柔,王欢,丁菊花,等.降水频率和强度改变对青藏高原高寒湿地土壤真菌群落的影响[J].应用与环境生物学报, 2024,30(4):667-674. Zhang K R, Wang H, Ding J H, et al. Effects of changes in precipitation frequency and intensity on soil fungal communities in alpine wetlands on the Qinghai-Tibet Plateau[J]. Chinese Journal of Applied and Environmental Biology, 2024,30(4):667-674. [35] 杨文焕,张明宇,杨娅婷,等.冰封期不同类型湖泊细菌与蓝藻群落组成及共现网络分析[J].湖泊科学, 2024,36(5):1366-1379. Yang W H, Zhang M Y, Yang Y T, et al. Co-occurrence network analysis and community composition of bacteria and cyanobacteria in various types of lakes during frozen period*[J]. Journal of Lake Sciences, 2024,36(5):1366-1379. [36] De V F T, Griffiths R I, Mark B, et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 2018,9(1):3033-3035. [37] Chaffron S, Rehrauer H, Pernthaler J, et al. A global network of coexisting microbes from environmental and whole-genome sequence data[J]. Genome Research, 2010,20(7):947-959. [38] Selbmann L, Egidi E, Isola D, et al. Biodiversity, evolution and adaptation of fungi in extreme environments[J]. Plant Biosystems, 2013,(1):147. [39] 杜菁,郑亚威,杨孜奕,等.近自然改造模式下闽楠根际土壤微生物群落对杉木间伐保留密度的响应[EB/OL].应用与环境生物学报, 1-12[2024-12-16] . https://doi.org/10.19675/j.cnki.1006-687x.2024.02005. Du J, Zheng Y W, Yang Z Y, et al. Response of soil rhizosphere microbial in Phoebe bournei to the Cunninghamia lanceolata thinning retention density under close-to-natural transformation[EB/OL]. Chinese Journal of Applied and Environmental Biology, 1-12[2024-12-16] . https://doi.org/10.19675/j. cnki.1006-687x.2024.02005. [40] 宁应之,周小燕,烟郑杰,等.土壤纤毛虫群落对退牧还草生态恢复的响应--以玛曲县为例[J].生态学报, 2020,40(7):2386-2395. Ning Y Z, Zhou X Y, Yan Z J, et al. Response of soil ciliates community to ecological restoration after the implementation of returning grazing to grasslands project:a case study of Maqu county, Gansu province[J]. Acta Ecologica Sinica, 2020,40(7):2386-2395. [41] 陈芬,余高,孙约兵,等.汞矿区周边农田土壤微生物群落结构特征及其环境驱动因子[J].环境科学, 2022,43(8):4342-4352. Chen F, Yu G, Sun Y B, et al. Characteristics of microbial community structure in the surrounding farmlands of a mercury mining area and its environmental driving factors[J]. Environmental Science, 2022, 43(8):4342-4352. [42] 刘旻霞,张灿,李瑞,等.不同坡向对高寒草甸秋冬季土壤纤毛虫群落的影响[J].兰州大学学报(自然科学版), 2019,55(3):380-387, 394. Liu M X, Zhang C, Li R, et al. Community characteristics of soil ciliates in different slopes of alpine meadow in autumn and winter[J]. Journal of Lanzhou University (Natural Sciences), 2019,55(3):380-387,394. [43] 肖茜文,胡盎,吴浩,等.高海拔地区农田和森林土壤稀有细菌群落结构差异及影响因素[J/OL].土壤学报, 1-12[2024-10-03] . http://cnki.wsp2.cn/kcms/detail/32.1119.P.20240923.1548.002.html. Xiao X W, Hu A, Wu H, et al. Differences in rare bacterial community compositions at high elevation regions and their influencing factors in farmland and forest soils[EB/OL]. Acta Pedologica Sinica, 1-12[2024-10-03] . http://cnki.wsp2.cn/kcms/detail/32.1119.P.20240923. 1548.002.html. [44] 严令斌.土壤微生物群落与植物功能性状对喀斯特小生境水热的响应机制[D].贵阳:贵州大学, 2020. Yan L B. Response mechanism of soil microbial community and plant functional traits to ecological factors of water and heat in karst micro-habitats[D]. Guiyang:Guizhou University, 2020. [45] 魏嘉欣,姜治国,杨林森,等.湖北神农架中亚热带山地落叶阔叶林25ha动态监测样地群落物种组成与结构特征[J].生物多样性, 2024,32(3):5-15. Wei J X, Jiang Z G, Yang L S, et al. Community composition and structure in a 25ha mid-subtropical mountain deciduous broad-leaved forest dynamics plot in Shennongjia, Hubei, China[J]. Biodiversity Science, 2024,32(3):5-15. [46] 赵莹,李建平,王誉陶,等.短期降水变化对荒漠草原土壤微生物群落的影响[EB/OL].生态学报, 2025,(1):1-16[2024-10-03] . https://doi.org/10.20103/j.stxb.2024022210364. Zhao Y, Li J P, Wang Y T, et al. Effects of short-term precipitation changes on soil microbial communities indesert grasslands[EB/OL]. Acta Ecologica Sinica, 2025,(1):1-16[2024-10-03] . https://doi.org/10.20103/j.stxb.2024022210364. [47] 江康威,张青青,王亚菲,等.放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[EB/OL].植物生态学报, 2024, 48(6):701-718. Jiang K W, Zhang Q Q, Wang Y F, et al. Characteristics of plant functional groups and the relationships with soil environmental factors in middle part of northern slope of Tianshan Mountains under different grazing intensities[EB/OL]. Chinese Journal of Plant Ecology, 2024, 48(6):701-718. [48] 张乾,杨凯,周长剑,等.植物功能性状对森林土壤有机质积累影响的研究进展[J].生态学杂志, 2024,43(9):2566-2573. Zhang Q, Yang K, Zhou C J, et al. Effect of plant functional traits on soil organic matter accumulation in forests:A review[J]. Chinese Journal of Ecology, 2024,43(9):2566-2573. [49] 孙子隽,钟国兴,张少搏,等.化肥减量配施有机肥对植烟土壤理化特性和微生物群落结构的影响[J].华北农学报, 2024,39(3):146-158. Sun Z J, Zhong G X, Zhang S B, et al. Effects of fertilizer reduction combined with organic fertilizer on effects of fertilizer reduction combined with organic fertilizer on[J]. Acta Agriculturae Boreali-Sinica, 2024,39(3):146-158.