Diversity of microbial insertion sequences and their co-occurrence with functional genes
ZHONG Wen-jing1,2, SU Jian-qiang1,2, LI Hu1,2, ZHOU Yan-yan1,3
1. State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
Abstract:Based on the ISfinder database and reference meta-analysis, this study conducted a systematic study of the diversity of 5812 insertion sequences (ISs) and their co-occurrence with functional genes. The study found significant differences in the distribution of different IS families among hosts, as well as in their co-occurrence with functional genes. DDE-type ISs are predominant, with the IS5 and IS3 families containing the most ISs, while the ISH6 family contains the fewest. ISs are widely found in bacteria and archaea, and several IS families show host specificity, being found only in either bacteria or archaea. The study demonstrated that IS co-occur with various functional genes, such as antibiotic resistance, heavy metal resistance, and stress resistance, indicating their significant role in environmental adaptation and the spread of antibiotic resistance genes among pathogens. Some IS exhibited co-occurrence with multiple functional genes, suggesting broader ecological adaptability, while others showed functional specificity. Future research should focus on experimentally validating the mechanisms through which IS mediate gene transfer and host adaptation, to reveal the mechanism of microbial evolution and ecological adaptation.
钟文婧, 苏建强, 李虎, 周艳艳. 微生物插入序列的多样性及其与功能基因的共现[J]. 中国环境科学, 2025, 45(4): 2314-2322.
ZHONG Wen-jing, SU Jian-qiang, LI Hu, ZHOU Yan-yan. Diversity of microbial insertion sequences and their co-occurrence with functional genes. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(4): 2314-2322.
[1] Mahillon J, Chandler M. Insertion sequences[J]. Microbiology and Molecular Biology Reviews, 1998,62(3):725-774. [2] Chandler M, Siguier P, Insertion Sequence[M]. in Brenner's Encyclopedia of Genetics, S. Maloy, K. Hughes, Editors. Place of publication:Academic Press, 2013:86-94. [3] Aziz R K, Breitbart M, Edwards R A. Transposases are the most abundant, most ubiquitous genes in nature[J]. Nucleic Acids Research, 2010,38(13):4207-4217. [4] Siguier P, Gourbeyre E, Varani A, et al. Everyman's guide to bacterial insertion sequences[J]. Mobile DNA III, 2015:555-590. [5] Razavi M, Kristiansson E, Flach C F, et al. The association between insertion sequences and antibiotic resistance genes[J]. Msphere, 2020,5(5):e00418-00420. [6] Vandecraen J, Chandler M, Aertsen A, et al. The impact of insertion sequences on bacterial genome plasticity and adaptability[J]. Critical Reviews in Microbiology, 2017,43(6):709-730. [7] Varani A, He S, Siguier P, et al. The IS 6 family, a clinically important group of insertion sequences including IS 26[J]. Mobile DNA, 2021, 12(11):1-18. [8] Wang Y, He J, Sun L, et al. IS26 mediated blaCTX-M-65 amplification in Escherichia coli increase the antibiotic resistance to cephalosporin in vivo[J]. Journal of Global Antimicrobial Resistance, 2023,35(1):202-209. [9] Fondi M, Fani R. The horizontal flow of the plasmid resistome:clues from inter-generic similarity networks[J]. Environmental Microbiology, 2010,12(12):3228-3242. [10] Partridge S R, Kwong S M, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance[J]. Clinical Microbiology Reviews, 2018,31(4):e00088-00017. [11] Top E M, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds[J]. Current Opinion in Biotechnology, 2003,14(3):262-269. [12] Siguier P, Pérochon J, Lestrade L, et al. ISfinder:the reference centre for bacterial insertion sequences[J]. Nucleic Acids Research, 2006, 34(suppl_1):D32-D36. [13] Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences:their genomic impact and diversity[J]. FEMS Microbiology Reviews, 2014,38(5):865-891. [14] Kirsch J M, Hryckowian A J, Duerkop B A. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota[J]. Cell Host& Microbe, 2024,32(5):739-754. [15] Alcock B P, Huynh W, Chalil R, et al. CARD 2023:expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database[J]. Nucleic Acids Research, 2023,51(D1):D690-D699. [16] Pal C, Bengtsson-Palme J, Rensing C, et al. BacMet:antibacterial biocide and metal resistance genes database[J]. Nucleic Acids Research, 2014,42(D1):D737-D743. [17] Lê S, Josse J, Husson F. FactoMineR:an R package for multivariate analysis[J]. Journal of Statistical Software, 2008,25(1):1-18. [18] Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data[J]. Bioinformatics, 2016,32(18):2847-2849. [19] Gómez-Rubio V. ggplot2-elegant graphics for data analysis[J]. Journal of Statistical Software, 2017,77(2):1-3. [20] Wei T, Simko V, Levy M, et al. Package'corrplot'[J]. Statistician, 2017,56(316):e24. [21] Irnawati I, Riswanto F D O, Riyanto S, et al. The use of software packages of R factoextra and FactoMineR and their application in principal component analysis for authentication of oils[J]. Indonesian Journal of Chemometrics and Pharmaceutical Analysis, 2021,1(1):1-10. [22] Filée J, Siguier P, Chandler M. Insertion sequence diversity in archaea[J]. Microbiology and Molecular Biology Reviews, 2007,71(1):121-157. [23] Tempel S, Bedo J, Talla E. From a large-scale genomic analysis of insertion sequences to insights into their regulatory roles in prokaryotes[J]. BMC Genomics, 2022,23(1):451. [24] Frost L S, Leplae R, Summers A O, et al. Mobile genetic elements:the agents of open source evolution[J]. Nature Reviews Microbiology, 2005,3(9):722-732. [25] Che Y, Yang Y, Xu X, et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes[J]. Proceedings of the National Academy of Sciences, 2021,118(6):e2008731118. [26] 李十盛,高会,赵富强,等.水产养殖环境中抗生素抗性基因的研究进展[J].中国环境科学, 2021,41(11):5314-5325. Li S S, Gao H, Zhao F Q, et al. Research progress on the occurrence and influencing factors of antibiotic resistance genes in aquaculture environment[J]. China Environmental Science, 2021,41(11):5314-5325. [27] 苏兆亮,糜祖煌,孙光明,等.多药耐药鲍氏不动杆菌耐药性与转座子及插入序列遗传标记研究[J].中华医院感染学杂志, 2010,20(20):3085-3087. Su Z L, Mi Z H, Sun G M, et al. Drug resistance and transposon and insertion sequence of multi-drug resistant acinetobacter baumannii[J]. Chinese Journal of Nosocomiology, 2010,20(20):3085-3087. [28] 许亚丰,王春新,陈国千,等.泛耐药鲍氏不动杆菌携带多种转座子与插入序列[J].中华医院感染学杂志, 2011,21(13):2651-2654. Xu Y F, Wang C X, Chen G Q, et al. Investigation of transposons and insertion sequences in pandrug-resistant acinetobacter baumanii[J]. Chinese Journal of Nosocomiology, 2011,21(13):2651-2654. [29] 黄静敏,柯碧霞,何冬梅,等.广东省耐碳青霉烯类鲍曼不动杆菌耐药性及分子流行特征分析[J].华南预防医学, 2021,47(8):1042-1046. Huang J M, Ke B X, He D M, et al. Analysis of drug resistance and molecular epidemiological characteristics of carbapenem-resistant Acinetobacter baumannii in Guangdong Province[J]. South China Journal of Preventive Medicine, 2021,47(8):1042-1046. [30] Bach B, First M B. Application of the ICD-11classification of personality disorders[J]. BMC Psychiatry, 2018,18(1):1-14. [31] Couchoud C, Bertrand X, Valot B, et al. Deciphering the role of insertion sequences in the evolution of bacterial epidemic pathogens with panISa software[J]. Microbial Genomics, 2020,6(6):e000356. [32] Carr V R, Pissis S P, Mullany P, et al. Palidis:fast discovery of novel insertion sequences[J]. Microbial Genomics, 2023,9(3):000917. [33] Kichenaradja P, Siguier P, Perochon J, et al. ISbrowser:an extension of ISfinder for visualizing insertion sequences in prokaryotic genomes[J]. Nucleic Acids Research, 2010,38(suppl_1):D62-D68. [34] Xie Z, Tang H. ISEScan:automated identification of insertion sequence elements in prokaryotic genomes[J]. Bioinformatics, 2017, 33(21):3340-3347. [35] Lee H, Doak T G, Popodi E, et al. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli[J]. Nucleic Acids Research, 2016,44(15):7109-7119.