1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; 2. South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
Abstract:This study conducted a comprehensive life cycle assessment of the carbon footprint associated with the solidification/stabilization combined with barrier backfilling (SSB) technology through a typical heavy metal-contaminated site case in South China. Using the emission factor method and life cycle impact assessment approach, we quantified the environmental impacts across the entire remediation process. The results revealed that the SSB technology exhibited a carbon emission intensity of 0.190t CO2/m3 contaminated soil. The most important carbon emission unit processes were primary treatment (33.7%), site construction (32.7%), and barrier backfilling (31.9%). Material production emerged as the principal emission source, with concrete manufacturing contributing 51.9% and solidification/stabilization reagents accounting for 33.4% of total emissions. The comprehensive environmental impact score of this case reached 84.3kPt. The implementation process of risk control exerted the most significant human health impacts, which were primarily contributed by the formation of fine particulate matter during construction activities and the global warming potential.
[1] Chang B B, Chen L. Land economic efficiency and improvement of environmental pollution in the process of sustainable urbanization: case of Eastern China[J]. Land, 2021,10(8):845. [2] 杨洁,叶春梅,司马菁珂,等.“双碳”目标下污染场地原位热处理技术发展趋势[J].环境工程学报, 2022,16(11):3517-3529. Yang J, Ye C M, Sima J k, et al. Discussion on development trend of in-situ thermal treatment technology for contaminated sites under dual-carbon target[J]. Chinese Journal of Environmental Engineering, 2022,16(11):3517-3529. [3] 生态环境部.关于促进土壤污染风险管控和绿色低碳修复的指导意见[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk05/202312/t20231219_1059420.html,2023-12-15/2024-09-06. [4] 蒋旭东,王丹,杨庆.碳排放核算方法学[M].北京:中国社会科学出版社, 2021:302. Jiang X D, Wang D, Yang Q. Carbon emission accounting methodology[M]. Beijing: China Social Sciences Press. [5] 龚先河,王健,范例,等.基于化学氧化和堆式热脱附技术修复污染土壤的环境足迹分析[J].环境工程技术学报, 2024,14(5):1608-1616. Gong X H, Wang J, Fan L, et al. Environmental footprint analysis of remediation of contaminated soil based on chemical oxidation and ex-situ thermal pile desorption technology[J]. Journal of Environmental Engineering Technology, 2024,14(5):1608-1616. [6] 肖萌,刘瑞平,李香兰,等.基于SiteWise~(TM)工具的污染场地修复环境足迹分析[J].中国环境科学, 2024,44(1):278-287. Xiao M, Liu R P, Li X L, et al. Environmental footprint analysis of site remediation based on the SiteWise~(TM)[J]. Chinese Environmental Science, 2024,44(1):278-287. [7] 张琦峰,方恺,徐明,等.基于投入产出分析的碳足迹研究进展[J].自然资源学报, 2018,33(4):696-708. Zhang F Q, Fang K, Xv M, et al. Research progress on carbon footprint based on input-output analysis[J]. Journal of Natural Resources, 2018,33(4):696-708. [8] 童庆蒙,沈雪,张露,等.基于生命周期评价法的碳足迹核算体系:国际标准与实践[J].华中农业大学学报(社会科学版), 2018,(1): 46-57,158. Tong Q M, Shen X, Zhang L, et al. Carbon footprint accounting systems based on life cycle assessment: international standards and practices[J]. Journal of Hua zhong Agricultural University (Social Sciences Edition), 2018,(1):46-57,158. [9] 杨宗帅,魏昌龙,宋昕,等.生命周期评价研究及其在我国土壤修复领域的应用进展[J].土壤通报, 2023,54(4):966-977. Yang Z S, Wei C L, Song X, et al. Development of life cycle assessment and its applications in soil remediation in China[J]. Chinese Journal of Soil Science, 2023,54(4):966-977. [10] 许维通,王昆,宋广翰,等.有机污染土壤异位热脱附修复的碳足迹分析[J].中国资源综合利用, 2024,42(11):208-212. Xu W T, Wang K, Song G H, et al. Carbon footprint analysis of ex-situ thermal desorption remediation of organic contaminated soil[J]. China Resources Comprehensive Utilization, 2024,42(11):208-212. [11] Amponsah N Y, Wang J Y, Zhao L.A review of life cycle greenhouse gas (GHG) emissions of commonly used ex-situ soil treatment technologies[J]. Journal of Cleaner Production, 2018,186:514-525. [12] 姜文超.污染场地热脱附技术的绿色低碳评价与措施研究[J].环境污染与防治, 2023,45(8):1189-1194. Jiang W C.Research on green low-carbon assessment and measures for thermal desorption technology applied in contaminated site[J]. Environmental Pollution and Control, 2023,45(8):1189-1194. [13] Chen C, Zhang X M, Chen J A, et al.Assessment of site contaminated soil remediation based on an input output life cycle assessment[J]. Journal of Cleaner Production, 2020,263(1):121422. [14] 陈汐昂,王文兵,李瑞飞,等.场地修复异位热脱附碳排放核算、优化与预测[J].环境工程学报, 2024,18(4):1073-1082. Chen X A, Wang W B, Li R F, et al. Accounting, optimization and prediction of carbon emission in ex-situ thermal desorption for site remediation[J]. Chinese Journal of Environmental Engineering, 2024, 18(4):1073-1082. [15] 侯星宇,张芸,戚昱,等.水泥窑协同处置工业废弃物的生命周期评价[J].环境科学学报, 2015,35(12):4112-4119. Hou X Y, Zhang Y, QI Y, et al. Life cycle assessment of co-processing industrial waste in a cement kiln[J]. Acta Scientiae Circumstantiae, 2015,35(12):4112-4119. [16] 吴翠华,于晓华,高军政,等.典型水泥窑协同处置废弃物的碳排放核算及碳减排分析[J].环境工程, 2023,41(7):30-36,60. Wu C H, Yu X H, Gao J Z, et al. Carbon emission accounting and reduction analysis of waste collaborative disposal in typical cement kilns[J]. Environmental Engineering, 2023,41(7):30-36,60. [17] Pang D J, Mao Y P, Jin Y, et al.Review on the use of sludge in cement kilns: mechanism, technical, and environmental evaluation[J]. Process Safety and Environmental Protection, 2023,172(Suppl):1072-1086. [18] 张群丽,谢海云,陈家灵,等.重金属污染土壤修复固化/稳定化技术研究现状及存在问题分析[J].环境保护科学, 2024,50(3):96-102. Zhang Q L, Xie H Y, Chen J L, et al. Research status of heavy metal contaminated soil remediation by solidification/stabilization technology[J]. Environmental Protection Science, 2024,50(3):96-102. [19] 王磊.固化稳定化技术修复化工厂污染土壤中的实验研究[J].天津化工, 2023,37(1):47-49. Wang L.Experimental study on the remediation of contaminated soil in chemical plants by solidification and stabilization technology[J]. Tianjin Chemical Industry, 2023,37(1):47-49. [20] 薛成杰,方战强.土壤修复产业碳达峰碳中和路径研究[J].环境工程, 2022,40(8):231-238. Xue C J, Fang Z Q.Path of carbon emission peaking and carbon neutrality in soil remediation industry[J]. Environmental Engineering, 2022,40(8):231-238. [21] 孟豪,董璟琦,张红振,等.污染场地风险管控碳排放计算方法及案例分析[J].中国环境科学, 2023,43(S1):368-375. Meng H, Dong J Q, Zhang H Z, et al. Calculation method and case analysis of carbon emissions for risk control and management of contaminated sites[J]. Chinese Environmental Science, 2023,43(S1):368-375. [22] Liang T, Huo M C, Yu L, et al.Life cycle assessment-based decisionmaking for thermal remediation of contaminated soil in a regional perspective[J]. Journal of Cleaner Production, 2023,392:136260. [23] Peng H, Wang B F, Yang F L, et al.Study on the environmental effects of heavy metals in coal gangue and coal combustion by ReCiPe 2016 for life cycle impact assessment[J]. Journal of Fuel Chemistry and Technology, 2020,48(11):1402-1408. [24] Huijbregts M A J, Steinmann Z J N, Elshout P M F, et al.ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level[J]. The International Journal of Life Cycle Assessment, 2016,22(2):138-147. [25] 刘含笑,吴黎明,林青阳,等.碳足迹评估技术及其在重点工业行业的应用[J].化工进展, 2023,42(5):2201-2218. Liu H X, Wu L M, Lin Q Y, et al. Carbon footprint assessment technology and its application in key industries[J]. Chemical Industry and Engineering Progress, 2023,42(5):2201-2218. [26] 李青青,苏颖,尚丽,等.国际典型碳数据库对中国碳排放核算的对比分析[J].气候变化研究进展, 2018,14(3):275-280. Li Q Q, Su Y, Shang L, et al. Comparison analysis of China’s emissions accounting by typical international carbon databases[J]. Climate Change Research, 2018,14(3):275-280. [27] 生态环境部.中国区域电网二氧化碳排放因子研究(2023)[EB/OL]. https://img54.hbzhan.com/4/20231030/638342598086069100426.pdf,2023-10-27/2024-09-06. [28] Zhang X X, Xu K L.Statistical data-based prediction of carbon dioxide emission factors of China's power generation at carbon peak in 2030[J]. Case Studies in Thermal Engineering, 2023,51:103633. [29] 生态环境部.中国产品全生命周期温室气体排放系数集(2022)[EB/OL]. https://www.caep.org.cn/sy/tdftzhyjzx/zxdt/202201/t20220105_966202.shtml,2022-01-05/2024-09-06. [30] Intergovernmental panel on climate change.IPCC emission factor database[EB/OL].https://www.ipcc-nggip.iges.or.jp/EFDB/main.php.2023-06-06/2024-09-06. [31] 亿科环境科技公司,四川大学建筑与环境学院.中国生命周期基础数据库[EB/OL]. https://www.ike-global.com/#/products-2/chineselca-database-clcd,2021-09-26/2024-09-06. [32] Vocciante M, D’Auris A d F, Franchi E, et al.CO2 footprint analysis of consolidated and innovative technologies in remediation activities[J]. Journal of Cleaner Production, 2021,297(12):126723. [33] Zheng L R, Li Y Z, Qian C, et al.Carbon emission evaluation of roadway construction at contaminated sites based on life cycle assessment method[J]. Sustainability, 2023,15(16):12642. [34] 高丹,张帆,曹正操.修复工厂模式研究及其在我国土壤修复领域的应用进展[J].广东化工, 2023,50(11):171-173. Gao D, Zhang F, Cao Z C, et al. Research on the remediation plant model and its application in the field of the contaminated soil remediation in China[J]. Guangdong Chemical Industry, 2023,50(11):171-173. [35] 周实际,孙慧洋,李颖臻,等.污染土壤稳定化碳排放计算方法及案例研究[J].中国环境科学, 2022,42(10):4840-4848. Zhou S J, Sun H Y, Li Y Z, et al. Carbon emission calculation method for contaminated soil stabilization and case study[J]. China Environmental Science, 2022,42(10):4840-4848. [36] Gallagher P M, Spatari S, Cucura J.Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies[J]. Journal of Hazardous Materials, 2013, 250-251:421-430. [37] Hou D Y, Gu Q B, Ma F Y, et al.Life cycle assessment comparison of thermal desorption and stabilization/solidification of mercury contaminated soil on agricultural land[J]. Journal of Cleaner Production, 2016,139:949-956. [38] 肖萌,孟豪,董璟琦,等.农田污染钝化修复环境影响定量评估方法与案例分析[J].中国环境科学, 2023,43(7):3571-3581. Xiao M, Meng H, Dong J Q, et al. Quantitative assessment methodology and case studies on environmental impacts of passivation remediation of agricultural land pollution[J]. Chinese Environmental Science, 2023,43(7):3571-3581. [39] Chen T, Wang L H, He B, et al.Study on the solidification/stabilization of cadmium-contaminated soil by red mud-assisted blast furnace slag under excitation conditions[J]. Journal of Cleaner Production, 2024, 435(3/4):140505. [40] Jiang Q, He Y M, Wu Y L, et al.Solidification/stabilization of soil heavy metals by alkaline industrial wastes: A critical review[J]. Environmental Pollution, 2022,312(4):120094.