Calculation and analysis of carbon emissions in the whole life cycle of pumped storage power stations
HOU Gong-yu1, MA Xiao-yun1,2, YANG Zhen-hua1, CHEN Qin-huang1, LIU Wen-xiu1, ZHANG You-wen1, ZHANG Dan-yang1, ZHAO Meng-yuan1
1. School of Mechanics and Civil Engineering, China University of Mining & Technology(Beijing), Beijing 100083, China; 2. China Construction Second Engineering Bureau LTD, Beijing 101149, China
Abstract:In order to explore the effectiveness of carbon reduction in energy storage hydropower, the Zhuanghe pumped storage power station in Liaoning Province was taken as a case study. Based on the life cycle assessment theory, process analysis and input-output mixed analysis were used to group calculate the carbon emissions throughout the entire life cycle of the pumped storage power station, and the differences in greenhouse gas fluxes between the upper and lower reservoirs before and after water storage were estimated. The results show that the total life-cycle carbon emissions of this pumped storage power plant is 2,094,774tCO2e, of which the operation phase accounts for 59% and the construction phase accounts for 41%, with a carbon emissions factor of 43.46gCO2e/(kW·h), which is about 1/33~1/25 of the carbon emissions of thermal power, and the average annual carbon reduction benefit can be about 88million yuan. This paper quantitatively demonstrates that storage hydropower is a clean energy source, and that vigorous development of pumped storage power plants can effectively save energy and reduce emissions, and provides data support for the low-carbon construction of pumped storage power plants.
侯公羽, 马骁赟, 杨振华, 陈钦煌, 刘文秀, 张又文, 张丹阳, 赵梦圆. 抽水蓄能电站全生命周期碳排放计算与分析[J]. 中国环境科学, 2023, 43(S1): 326-335.
HOU Gong-yu, MA Xiao-yun, YANG Zhen-hua, CHEN Qin-huang, LIU Wen-xiu, ZHANG You-wen, ZHANG Dan-yang, ZHAO Meng-yuan. Calculation and analysis of carbon emissions in the whole life cycle of pumped storage power stations. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(S1): 326-335.
[1] 国务院.中共中央、国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[N].人民日报, 2021-10-25(001). The State Council. The Communist Party of China Central Committee and the State Council: Working guidance for carbon dioxide peaking and carbon neutrality in full and faithful implementation of the new development philosophy [N].People’s Daily, 2021-10-25(001). [2] 马良.碳达峰、碳中和背景下抽水蓄能建设发展研究[J].中国工程咨询, 2021,(9):35-38. Ma L. Research on the development of pumped storage energy construction under the background of carbon peak and carbon neutrality [J].China Engineering Consultants, 2021,(9):35-38. [3] 产业信息网.2022年中国抽水蓄能行业相关政策汇总:政府大力推动抽水蓄能电站建设,促进抽水蓄能规模化形成[R/OL].https://www.chyxx.com/industry/1123301.html2022-8-25. Industrial Information Network. Summary of policies related to China's pumped storage industry in 2022: The government vigorously promotes the construction of pumped storage power stations and promotes the formation of large-scale pumped storage energy [R/OL].2022-8-25. [4] 中国政府网.《抽水蓄能中长期发展规划(2021-2035)》印发实施[R/OL].http://www.gov.cn/xinwen/202109/09/content_5636487.html. 2021-09-09. Chinese government website. Issuance and implementation of the medium and long term development plan for pumped storage energy (2021-2035) [R/OL].2021-09-09. [5] Fearnside P M. Hydroelectric dams in the Brazilian Amazon as sources of ‘greenhouse’ gases [J].Environmental Conservation, 1995, 22(1):7-19. [6] 曾晓莹,邱荣祖,林丹婷,等.中国交通碳排放及影响因素时空异质性[J].中国环境科学, 2020,40(10):4304-4313. Zeng X Y, Qiu R Z, Lin D T, et al. Spatio-temporal heterogeneity of transportation carbon emissions and its influencing factors in China [J].China Environmental Science, 2020,40(10):4304-4313. [7] 马晓君,陈瑞敏,董碧滢,等.中国工业碳排放的因素分解与脱钩效应[J].中国环境科学, 2019,39(8):3549-3557. Ma X J, Chen R M, Dong B Y, et al. Factor decomposition and decoupling effect of China's industrial carbon emissions [J].China Environmental Science, 2019,39(8):3549-3557. [8] 洪竞科,李沅潮,郭偲悦.全产业链视角下建筑碳排放路径模拟:基于RICE-LEAP模型[J].中国环境科学, 2022,42(9):4389-4398. Hong J K, Li R C, Guo S Y. Simulating building carbon emission path with a RICE-LEAP model from the perspective of the whole supply chain [J].China Environmental Science, 2022,42(9):4389-4398. [9] Zhang Q F, Karney B, MacLean H L, et al. Life-cycle inventory of energy use and greenhouse gas emissions for two hydropower projects in China [J].Journal of Infrastructure Systems, 2007,13(4):271-279. [10] 庞博慧.基于碳足迹理论的水电枢纽工程能耗分析研究[D].天津:天津大学, 2014. Pang B H. Energy consumption analysis of hydropower projects based on carbon footprint theory [D].Tianjin: Tianjin University, 2014. [11] 郑巧珍.水电工程建造阶段碳足迹评价研究[D].大连:大连理工大学, 2018. Zheng Q Z. The carbon footprint evaluation of hydropower projects during construction phase [D].Dalian: Dalian University of Technology, 2018. [12] 柳春娜.基于生命周期的混凝土大坝碳排放评价方法研究[D].北京:清华大学, 2013. Liu C N. Research on evaluating methods for carbon emissions of concrete dams based on life cycle assessment [D].Beijing: Tsinghua University, 2013. [13] 何坤,钟权.玉瓦水电站生命周期温室气体排放研究[J].四川水力发电, 2020,39(2):115-118. He K, Zhong Q. Study on greenhouse gas emission in the life cycle of Yuwa hydropower station [J].Sichuan Hydro Power, 2020,39(2):115-118. [14] 钟权,夏欣.基于生命周期的猴子岩水电站温室气体排放分析[J].水电站设计, 2021,37(1):81-84. Zhong Q, Xia X. Analysis of greenhouse gas emissions at Houziyan hydropower station based on life cycle theory [J].Design of Hydroelectric Power Station, 2021,37(1):81-84. [15] 何姗姗.结合储能技术的电力系统低碳发展模式研究——以抽水蓄能为例[D].北京:华北电力大学, 2017. He S S. Research on low carbon development model of power system with energy storage technology—A case study of pumped storage power system [D].Beijing: North China Electric Power University, 2017. [16] 景侨楠,侯慧敏,白宏涛,等.自上而下的城市能源消耗碳排放估算方法[J].中国环境科学, 2019,39(1):420-427. Jing Q N, Hou H M, Bai H T, et al. A top-bottom estimation method for city-level energy-related CO2 emissions. China Environmental Science, 2019,39(1):420-427. [17] Suh S, Lenzen M, Treloar G J, et al. System Boundary Selection in Life-Cycle Inventories Using Hybrid Approaches [J].Environmental Science & Technology, 2004,38(3):657-664. [18] Lave L B, Matthews S H. Environmental Life Cycle Assessment of Goods and Services [J].Nihon Heikatsukin Gakkai Zasshi, 2012,4(2): 2606-2613. [19] Lenzen M. A Generalized Input-Output Multiplier Calculus for Australia [J].Economic Systems Research, 2010,13(1):65-92. [20] 黄跃群,刘耀儒,许文彬,等.水利水电工程全生命周期碳排放研究——以犬木塘工程为例[J].清华大学学报(自然科学版), 2022,62(8):1366-1373. Huang Y Q, Liu Y R, Xu W B, et al. Life cycle carbon emissions of water reservoir and hydroelectric projects: A case study of the Quanmutang project [J].Journal of Tsinghua University(Science and Technology), 2022,62(8):1366-1373. [21] 陈康海.建筑工程施工阶段的碳排放核算研究[D].广东:广东工业大学, 2014. Chen K H. Research on quantitative assessment method of GHG emission for construction projects [D].Guangdong: Guangdong University of Technology, 2014. [22] 马忠海.中国几种主要能源温室气体排放系数的比较评价研究[D].北京:中国原子能科学研究院, 2002. Ma Z H. Comparative evaluation of greenhouse gas emission coefficients of several major energy sources in China [D].Beijing: China Institute of Atomic Energy, 2002. [23] 张孝存.建筑碳排放量化分析计算与低碳建筑结构评价方法研究[D].哈尔滨:哈尔滨工业大学, 2018. Zhang X C. Research on the quantitative analysis of building carbon emissions and assessment methods for low-carbon buildings and structures [D].Harbin: Harbin Institute of Technology, 2018. [24] 张社荣,庞博慧.基于碳足迹理论的大型水电枢纽工程环境排放分析[J].水力发电学报, 2015,34(4):170-176. Zhang S R, Pang B H. Analysis on environmental discharge of large-scale hydropower project using carbon footprint theory [J].Journal of Hydroelectric Engineering, 2015,34(4):170-176. [25] 杜海龙,李哲,郭劲松.基于ISO14067的长江上游某水电项目碳足迹分析[J].长江流域资源与环境, 2017,26(7):1102-1110. Du H L, Li Z, Guo J S. Carbon footprint analysis of a hydropower project in the upstream of the Yangtze: following ISO14067[J].Resources and Environment in the Yangtze Basin, 2017,26(7):1102-1110. [26] 水电水利规划设计总院.水电工程施工机械台时费定额[M].北京:中国电力出版社, 2005:43-88. China Renewable Energy Engineering Institute. Quota of construction machinery hourly fee for hydropower engineering [M].Beijing: China Electric power Press, 2005:43-88. [27] 袁俊森,潘纯.水利工程经济[M].北京:中国水利水电出版社, 2005:99-102. Yuan J S, Pan C. Water Conservancy Project Economy [M].Beijing: China Water & Power Press, 2005:99-102. [28] 李雨晨,秦宇,杨柳,等.长江上游大中型水库碳排放量估算与分析:以IPCC国家温室气体清单指南为基础[J].湖泊科学, 2023,35(1):131-145. Li Y C, Qin Y, Yang L, et al. Estimation and analysis of carbon emissions from the large-and medium-sized reservoirs in the upper reaches of Changjiang River: On the basis of the lPCC National Greenhouse Gas Inventory [J].Journal of Lake Sciences, 2023, 35(1):131-145. [29] International Hydropower Association. GHE Risk Assessment Tool (Beta Version) User manual [EB/OL].[2022-12-19].https://www. hydropower.org/. [30] Ribeiro F D, Da Silva G A. Life-cycle inventory for hydroelectric generation: a Brazilian case study [J].Journal of Cleaner Production, 2010,18(1):44-54. [31] Jiang T, Shen Z, Liu Y, et al. Carbon footprint assessment of four normal size hydropower stations in China [J].Sustainability, 2018, 10(6):2018. [32] 夏欣,钟权.水电站生命周期温室气体排放研究综述[J].中国农村水利水电, 2020,(11):188-192,198. Xia X, Zhong Q. Research overview of life cycle greenhouse gas emissions from hydropower plants [J].China Rural Water and Hydropower, 2020,(11):188-192,198. [33] 邹一雄,刘羽.小型水电站生命周期碳足迹研究[J].水电与新能源, 2020,34(2):31-35. Zou Y X, Liu Y. Life cycle carbon footprint of small hydropower stations [J].Hydropower and New Energy, 2020,34(2):31-35. [34] 杜海龙,魏俊,李哲.基于ISO14067评估可渡河水电开发碳减排潜力[J].人民珠江, 2017,38(12):45-49. Du H L, Wei J, Li Z. Assessment of carbon emission reduction potential of hydropower development in Kedu river based on ISO14067[J].Pearl River, 2017,38(12):45-49. [35] 杜海龙.金沙江大型水电站碳足迹的生命周期分析研究[D].重庆:中国科学院大学(中国科学院重庆绿色智能技术研究院), 2017. Du H L. Carbon footprint of typical hydro-projects in Jinsha River [D].Chongqing: University of Chinese Academy of Sciences (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences), 2017. [36] 吴世勇,申满斌,陈求稳.清洁发展机制(CDM)与我国水电开发[J].水力发电学报, 2008,27(6):53-55. Wu S Y, Shen M B, Chen Q W. Clean development mechanism (CDM) and hydropower development in China [J].Journal of Hydroelectric Engineering, 2008,27(6):53-5. [37] 李长健.抽水蓄能电站减碳效益研究[J].水电与抽水蓄能, 2021, 7(6):45-48,80. Li C J. Study on carbon reduction benefit of pumped storage power station [J].Hydropower and Pumped Storage, 2021,7(6):45-48,80.