Inversion identification of groundwater contamination source based on U-D factorization Kalman filter
JIA Shun-qing1,2, LU Wen-xi1,2, LI Jiu-hui1,2, BAI Yu-kun1,2
1. Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130012, China; 2. College of Environment and Resources, Jilin University, Changchun 130012, China
Abstract:This paper uses U-D factorization Kalman filtering and a nonlinear programming optimization model to identify the number, location, and release intensity of groundwater pollution sources. Based on a hypothetical example, a numerical simulation model of groundwater contamination was established, and the parameters having large influences on the model were selected as random variables in the model by using sensitivity analysis. Then, Kalman filtering based on U-D factorization was used to identify the number and location of pollution sources. On the basis of these processes, an optimization model for identifying the release intensity of contamination sources was established, and a Kriging interpolation method was used to establish an Surrogate model for the numerical simulation model of groundwater pollution transport, as an alternative of the simulation model, which was embedded in the optimization model as a constraint condition, and the genetic algorithm was applied to solve the optimization model. Finally, the source strength of groundwater pollution was identified. The results show that the Kalman filter method based on U-D factorization could ensure the stability of the filter and effectively identify the number and location of pollution sources; the nonlinear programming optimization model could identify the release intensity of pollution sources. In the process of solving the optimization model, a substitute model of the simulation model embedded the optimization model was built with the Kriging method, which could greatly reduce the calculation load and time under the condition of a certain accuracy.
贾顺卿, 卢文喜, 李久辉, 白玉堃. 基于U-D分解卡尔曼滤波地下水污染源溯源辨识[J]. 中国环境科学, 2021, 41(2): 713-719.
JIA Shun-qing, LU Wen-xi, LI Jiu-hui, BAI Yu-kun. Inversion identification of groundwater contamination source based on U-D factorization Kalman filter. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(2): 713-719.
王景瑞,胡立堂.地下水污染源识别的数学方法研究进展[J]. 水科学进展, 2017,28(6):943-952.Wang J R,Hu L T. Advances in mathematical methods of groundwater pollution source identification[J]. Advances in Water Science, 2017, 28(6):943-952.
[2]
Mohinder S G. Kalman filtering theory and practice using matlab[M]. New Jersey:Wiley, 2015.
[3]
Chui C K. Kalman filtering:With real-time applications[M]. 2010.
[4]
Herrera G S, Pinder G F. Space-time optimization of groundwater quality sampling networks[J]. Water Resources Research, 2005, 41(12):doi.org/10.1029/2004WR003626.
[5]
Schmidt F, Wainwright H M, Faybishenko B, et al. In situ monitoring of groundwater contamination using the Kalman filter[J]. Environmental Science & Technology, 2018,52(13):7418-7425.
[6]
Dokou Z, Pinder G F. Optimal search strategy for the definition of a DNAPL source[J]. Journal of Hydrology, 2009,376(3/4):542-556.
[7]
Jiang S, Fan J, Xia X, et al. An effective Kalman Filter-Based Method for groundwater pollution source identification and plume morphology characterization[J]. Water, 2018,10(8):1063.doi:10.3390/w10081063.
[8]
江思珉,张亚力,周念清,等.基于污染羽形态对比的地下水污染源识别研究[J]. 水利学报, 2014,45(6):735-41.Jiang S M, Zhang Y L, Zhou N Q, et al. Groundwater contaminant source identification based on the morphological comparison of pollution plume[J]. Journal of Hydraulic Engineering, 2014,45(6):735-741.
[9]
江思珉,张亚力,周念清,等.基于卡尔曼滤波和模糊集的地下水污染羽识别[J]. 同济大学学报(自然科学版), 2014,42(3):435-40.Jiang S M, Zhang Y L, Zhou N Q, et al. Groundwater contaminant plume identification by using Kalman filter technique and Fuzzy set theory[J]. Journal of Tongji University(Natural Science), 2014,42(3):435-440.
[10]
Gu W, Lu W, Zhao Y, et al. Identification of groundwater pollution sources based on a modified plume comparison method[J]. Water Science and Technology-Water Supply, 2017,17(1):188-197.
[11]
张友民,张洪才,戴冠中.一种U-D分解自适应推广卡尔曼滤波及应用[J]. 西北工业大学学报, 1993,(3):345-350.Zhang Y M, Zhang H C, Dai G Z.A U-D factorization-based adaptive extended Kalman filter and its application to flight state estimation[J]. Journal of Northwestern Polytechnical University, 1993,(3):345-350.
[12]
张友民,戴冠中,张洪才.基于U-D分解推广卡尔曼滤波的神经网络学习算法[J]. 控制理论与应用, 1996,(2):235-241.Zhang Y M, Zhang H C, Dai G Z. A New fast learning algorithm for feedforward neural networks using U-D factorization-based extended Kalman filter[J]. Control Theory & Applications, 1996,(2):235-241.
[13]
崔尚进,卢文喜,顾文龙,等.基于U-D分解的卡尔曼滤波法在地下水污染源识别中的应用[J]. 中国环境科学, 2016,36(9):2633-2637.Cui S J, Lu W X, Gu W L, et al. Application of U-D factorization-based Kalman filter to identify the groundwater pollution source[J]. China Environmental Science, 2016,36(9):2633-2637.
[14]
Chen Z, Jaime Gomez-Hernandez J, XU T, et al. Joint identification of contaminant source and aquifer geometry in a sandbox experiment with the restart ensemble Kalman filter[J]. Journal of Hydrology, 2018,564(10):74-84.
[15]
Xu T, Gomez-Hernandez J J. Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering[J]. Water Resources Research, 2016,52(8):6587-6595.
[16]
Xu T, Jaime Gomez-Hernandez J. Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter[J]. Advances in Water Resources, 2018,112(10):6-23.
[17]
李久辉,卢文喜,常振波,等.基于不确定性分析的地下水污染超标风险预警[J]. 中国环境科学, 2017,37(6):2270-7.Li J H, Lu W X, Chang Z B, Risk prediction of groundwater pollution based on uncertainty analysis[J]. China Environmental Science, 2017, 37(6):2270-2277.
[18]
施小清,吴吉春,吴剑锋,等.多个相关随机参数的空间变异性对溶质运移的影响[J]. 水科学进展, 2012,23(4):509-515.Shi X Q, Wu J C, Wu J F, et al. Effects of the heterogeneity of multiple correlated random parameters on solute transport[J]. Advances in Water Science, 2012,23(4):509-515.
[19]
白玉堃,卢文喜,李久辉.卡尔曼滤波方法在地下水污染源反演中的应用[J]. 中国环境科学, 2019,39(8):3450-3456.Bai Y K, Lu W X, Li J H, et al. Application of Kalman filter to identify the groundwater contaminant sources[J]. China Environmental Science, 2019,39(8):3450-3456.
[20]
鲁程鹏,束龙仓,刘丽红,等.基于灵敏度分析的地下水数值模拟精度适应性评价[J]. 河海大学学报(自然科学版), 2010,38(1):26-30.Lu C P, Shu L C, Liu L H, et al. Adaptability evaluation of numerical simulation accuracy of groundwater based on sensitivity analysis[J]. Journal of Hohai University(Natural Sciences), 2010,38(1):26-30.
[21]
束龙仓,王茂枚,刘瑞国,等.地下水数值模拟中的参数灵敏度分析[J]. 河海大学学报(自然科学版), 2007,(5):491-495Shu L C, Wang M M, Liu R G, et al. Sensitivity analysis of parameters in numerical simulation of groundwater[J]. Journal of Hohai University (Natural Sciences), 2007,(5):491-495.