Response of photosynthetic characteristics and fluorescence parameters of tomato to Cd in soil
LAI Qiu-yu1, WEI Shu-he2, DAI Hui-ping1, JIA Gen-liang3
1. College of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong 723001, China; 2. Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 3. College of Science, Northwest A & F University, Yangling 712100, China
Abstract:In order to explore the potential of tomato (Lycopersicon esculentum Mill.) for remediation of Cd contaminated soil, the response characteristics of tomato growth, photosynthetic fluorescence and Cd uptake were studied under the conditions of 2, 4, 8, 16, 24 and 48mg/kg Cd added in soil by pot experiment. The results showed that the chlorophyll content, photosynthetic performance, fluorescence parameters and biomass of tomato were significantly lower (P<0.05) than the control when Cd concentration was more than 8mg/kg added in soil, indicating a strong Cd sensitivity. At the same time, in all Cd treatments, the enrichment factor (2.48~6.60) and translocation factor (1.21~3.90) of tomato leaves were greater than 1, showing strong enrichment ability, but the soil Cd removal rate was low. Therefore, the tested tomato variety was sensitive to Cd and had little potential for remediation of Cd contaminated soil.
赖秋羽, 魏树和, 代惠萍, 贾根良. 番茄光合荧光特性及其镉吸收对土壤镉污染的响应[J]. 中国环境科学, 2019, 39(11): 4737-4742.
LAI Qiu-yu, WEI Shu-he, DAI Hui-ping, JIA Gen-liang. Response of photosynthetic characteristics and fluorescence parameters of tomato to Cd in soil. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(11): 4737-4742.
李元,祖艳群.重金属污染生态与生态修复[M]. 北京:科学出版社, 2016. Li Y, Zu Y Q. Heavy metal pollution ecology and ecological remediation[M]. Beijing:Science Press, 2016.
[2]
环境保护部,国土资源部.全国土壤污染状况调查公报[R]. 北京:环境保护部,国土资源部, 2014. Ministry of environmental protection, Ministry of land and resources. National investigation bulletin on soil pollution[R]. Beijing:Ministry of environmental protection, Ministry of land and resources, 2014.
[3]
Li J T, Liang Z W, Jia P, et al. Effects of a bacterial consortium from acid mine drainage on cadmium phytoextraction and indigenous soil microbial community[J]. Plant and Soil, 2017,415:347-358.
[4]
Li T Q, Han X, Liang C F, et al. Sorption of sulphamethoxazole by the biochars derived from rice straw and alligator flag[J]. Environmental Technology, 2015,36(2):245-253.
[5]
赵雪梅,谢华,吴开庆,等.酸与Cd污染农田的植物修复及健康风险评价[J]. 农业环境科学学报, 2016,34(4):702-708. Zhao X M, Xie H, Wu K Q, et al. Phytoremediation and health risk assessment of acidified and cadmium contaminated farmland[J]. Journal of Agro-Environment Science, 2016,34(4):702-708.
[6]
万延慧,齐乃敏,朱为民,等.重金属(Cd2+、Zn2+)胁迫对番茄幼苗抗氧化酶系统的影响[J]. 上海农业学报, 2004,20(4):79-82. Wai Y H, Qi N M, Zhu W M, et al. ffects of Cd2+ and Zn2+ on antioxidant enzymes system of soluble protein of tomato seedlings[J]. Acta Agriculturae Shanghai, 2004,20(4):79-82.
[7]
崔秀敏,吴小宾,李晓云,等.铜、镉毒害对番茄生长和膜功能蛋白酶活性的影响及外源NO的缓解效应[J]. 植物营养与肥料学报, 2011,17(2):349-357. Cui X M, Wu X B, Li X Y, et al. Responses of growth, functional enzyme activity in bio membrane of tomato seedling stoexcessive copper, cadmium and the alleviating effect of exogenous nitric oxide[J]. Plant Nutritionand Fertilizer Science, 2011,17(2):349-357.
[8]
赵首萍,张永志,于国光,等.Cd胁迫对2种基因型番茄幼苗活性氧清除系统的影响[J]. 中国农学通报, 2011,27(19):166-171. Zhao S P, Zhang Y Z, Yu G G, et al. The effect of cadmium stress on two genotype tomato seedlings, 2011,27(19):166-171.
[9]
谭小琪,李取生,何宝燕,等.番茄对镉吸收累积的品种差异[J]. 暨南大学学报(自然科学与医学版), 2014,35(3):215-220. Tan X Q, Li Q S, He B Y, et al. Differences in cadmium absorption and accumulation of tomato (Lycopersicon esculentum) varieties on Cd-polluted soil[J]. Journal of Jinan University(Natural Science & Medicine Edition), 2014,35(3):215-220.
[10]
GB15618-2018国家土壤环境质量标准农用地土壤污染风险管控标准(试行)[S]. 2018. GB15618-2018 National standard for soil environmental quality and risk control of soil pollution in agricultural land (Trial implementation)[S]. 2018.
[11]
Dai, H P, Wei S H, Skuza L. et al. Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation[J]. Ecotoxicology and Environmental Safety, 2019,180:179-184.
[12]
祁金洋,牛喆,张静,等.重金属铅对绢毛委陵菜光合特性及荧光参数的影响[J]. 草地学报, 2018,26(2):447-452. Qi JY, Niu Z, Zhang J,et al.Effects of heavy metal lead on photosynthetic characteristics and fluorescence parameters of Potentilla Sericea L. Acta Agrestia Sinica,2018,26(2):447-452.
[13]
简敏菲,张乖乖,史雅甜,等.土壤镉、铅及其复合污染胁迫对丁香蓼(Ludwigia prostrata)生长和光合荧光特性的影响[J]. 应用与环境生物学报, 2017,23(5):837-844. Jian M F, Zhang G G, Shi Y T et al. Effects of single and combined pollution stress of cadmium and lead in soil on the growth and photosynthetic fluorescence characteristics of Ludwigia prostrata[J]. Chin J Appl Environ Biol, 2017,23(5):837-844.
[14]
An Y J. Soil ecotoxicity assessment using cadmium sensitive plants[J]. Environmental Pollution, 2004,127(1):21-26.
[15]
王浩浩,刘海伟,石屹,等.烤烟品种对镉吸收累积敏感性差异研究[J]. 中国烟草科学, 2013,34(6):64-68,76. Wang H H, Liu H W, Shi Y, et al. Sensibility variation of cadmium uptake and accumulation among flue-cured tobacco varieties[J]. Chinese Tobacco Science, 2013,34(6):64-68,76.
[16]
刘传娟,刘凤枝,蔡彦明,等.不同种类蔬菜苗期对镉的敏感性研究[J]. 农业环境科学学报, 2009,28(9):1789-1794. Liu F Z, Cai Y M, Wang L, et al. Sensitivity of different vegetable seedlings to cadmium[J]. Journal of Agro-Environment Science, 2009,28(9):1789-1794.
[17]
丁枫华,刘术新,罗丹,等.23种常见作物对镉毒害的敏感性差异[J]. 环境科学, 2011,32(1):277-283. Ding F H, Liu S X, Luo D, et al. Different sensitivity of 23 common crop species to cadmium toxicity[J]. Environmental Science, 2011, 32(1):277-283.
[18]
唐明灯,艾绍英,李盟军,等.紫云英对污染土壤上叶菜生长及其镉和铅含量的影响[J]. 中国环境科学, 2011,31(3):461-465. Effect of Astragalus sinicus on the growth, Cd and Pb concentration of leafy vegetables[J].China Environmental Science, 2011,31(3):461-465.
[19]
魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵(Solanum nigrum L)[J]. 科学通报, 2004,49(24):2568-2573. Wei S H, Zhuo Q X, Wang Xin, et al. A newly discovered cadmium superaccumulator plant Solanum nigrum L[J]. Chinese Science Bulletin, 2004,49(24):2568-2573.
[20]
贺国强,刘茜,郭振楠,等.镉胁迫对烤烟叶片光合和叶绿素荧光特性的影响[J]. 华北农学报, 2016,31:388-393. He G Q, Liu Q, Guo Z N, et al. Effects of cadmium stress on photosynthetic and characteristics, chlorophyll fluorescence in leaves of flue-cured tobacco[J]. Acta Agriculturae Boreali-sinica, 2016,31:388-393.
[21]
崔振,李昌晓,贺燕燕,等.中华金叶榆和银水牛果苗木的生长和光合作用对土壤锌污染的响应[J]. 林业科学, 2017,53(3):114-122. Cui Z, Li C X, He Y Y, et al. Responses of growth, photosynthesis of Ulmus pumila ‘Jinye’ and Shepherdia argentea to soil Zinc contamination[J]. Scientia Silvae Sinicae, 2017,53(3):114-122.
[22]
杨斌,张文辉.竹柳对Pb2+胁迫的响应及其Pb富集能力[J]. 西北林学院学报, 2016,31(1):36-41. Yang B, Zhang W H. Responses of Salix matsudana Koidz cv.zhuliu to Pb2+ stress and its accumulation ability[J]. Journal of Northwest Forestry University, 2016,31(1):36-41.
[23]
曲丹阳,张立国,顾万荣,等.壳聚糖对镉胁迫下玉米幼苗根系生长及叶片光合的影响[J]. 生态学杂志, 2017,36(5):1300-1309. Qu D Y, Zhang L G, Gu W R, et al. Effects of chitosan on root growth and leaf photosynthesis of maize seedlings under cadmi-um stress[J]. 2017,36(5):1300-1309.
[24]
王峰,单睿阳,陈玉真,等.闽中某矿区县茶园土壤和茶叶重金属含量及健康风险[J]. 中国环境科学, 2018,38(3):1064-1072. Wang F, Shang R Y, Chen Y Z, et al. Concentrations and health risk assessment of heavy metals in tea garden soil and tea-leaf from a mine county in central Fujian province[J]. China Environmental Science, 2018,38(3):1064-1072.
[25]
宋雪梅,夏超,廖洋,等.外源稀土Ce3+对凤眼莲钙相关光合作用的影响[J]. 中国环境科学, 2014,34(9):2362-2367. Song X M, Xia C, Liao Y, et al. nfluences of rare earths (Ce3+) on calcium-regulated photosynthesis in Eichhornia crassipes[J]. China Environmental Science, 2014,34(9):2362-2367.
[26]
高夕彤,李硕,贾娟,等.不同番茄品种对镉胁迫的耐抗性差异研究[J]. 华北农学报, 2018,33(2):169-176. GAO XT, Li S, Jia J, et al. Study on resistance of different tomato varieties to cadmium stress[J]. Acta Agriculturae Boreali-sinica, 2018,33(2):169-176.
[27]
张传玲,江红生,李长江,等.纳米银与镉的复合毒性对拟南芥根系形态及叶片生理指标的影响[J]. 中国环境科学, 2018,38(5):1951-1960. Zhang C L, Jiang H S, Li C J, et al. Effects of Ag NPs and cadmium on root morphology and leaves physiological indexes of Arabidopsis thaliana[J]. China Environmental Science, 2018,38(5):1951-1960.
[28]
Krause G H, Winter K. Photoinhibition of photosynthesis in plants growing in natural tropical forest gaps:a chlorophyll fluorescence study[J]. Plant Biology, 2015,109(6):456-462.
[29]
王世玉,吴文勇,刘菲,等.典型污灌区土壤与作物中重金属健康风险评估[J]. 中国环境科学, 2018,38(4):1550-1560. Wang S Y, Wu W Y, Liu F, et al. Assessment of human health risks of heavy metals in the typical sewage irrigation areas[J]. China Environmental Science, 2018,38(4):1550-1560.
[30]
Wang Y M, Yang R X, Zheng J Y, et tal. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.)[J]. Ecotoxicology and Environmental Safety, 2019,167:10-19.
[31]
Li M, Zhang L J, Tao L, et al. Ecophysiological responses of Jussiaearapens to cadmium exposure[J]. Aquatic Botany, 2008, 88(4):347-352.