Remediation effects of combined amendment and silicon fertilizer on Cd contaminated paddy soil
LIU Jia-wei1, ZHOU Hang1,2, WEI Bin-yun1, CUI Tong-ke1,2, ZHANG Jing-yi1, HUANG Fang1, GU Jiao-feng1,2, LIU Jun3, LIAO Bo-han1,2
1. College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; 2. Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China; 3. The Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Hengyang 421001, China
Abstract:A field experiment was conducted in a Cd-contaminated paddy field in Liuyang City, Hunan Province, and the remediation effects of combined amendment LS (limestone + sepiolite)and application of silicon fertilizer were studied. The results showed that:(1) Application of silicon fertilizer (90kg/hm2) to the soil and treatments of spraying foliar silicon fertilizer (0.2,0.4g/L) showed no significant effects on soil pH values, while all treatments with LS application (2250, 4500kg/hm2) significantly increased soil pH (P < 0.05). (2)Application of 90kg/hmof silicon fertilizer to soil significantly decreased exchangeable Cd concentration by 20.0% and TCLP (Toxicity Characteristic Leaching Procedure) extractable Cd concentration by 18.5% in soil. While spraying foliar silicon fertilizer had no significant effect on soil Cd availability. All treatments with LS application (2250,4500kg/hm2) decreased exchangeable Cd concentrations by 25.8%~49.9% and TCLP extractable Cd concentrations by 26.4%~44.5%, respectively. (3)All three single technology treatments significantly decreased Cd concentrations in different rice tissues, but these Cd reductions in brown rice were lower than those combination treatments of the three technologies. The combination treatments (JL1F1, JL1F2, JL2F1, and JL2F2) decreased Cd concentrations in brown rice by 25.6% to 70.5%. (4)The combination technologies of “amendment LS + application of silicon fertilizer + spraying foliar silicon fertilizer” significantly decreased Cd availability in soil and Cd concentrations in all rice tissues. Among these combination technologies, JL2F2 showed the highest effect on reducing Cd concentrations in brown rice (from 0.66mg/kgto 0.19mg/kg), and realized the safe production of rice in this field with moderate to serious Cd pollution.
郭观林,周启星,李秀颖.重金属污染土壤原位化学固定修复研究进展[J].应用生态学报, 2005,16(10):1990-1996. Guo G L, Zhou Q X, Li X Y. Advances in research on in situ chemoimmobilization of heavy metals in contaminated soils[J]. Chinese Journal of Applied Ecology, 2005,16(10):1990-1996.
[2]
冉洪珍,郭朝晖,肖细元,等.改良剂连续施用对农田水稻Cd吸收的影响[J].中国环境科学, 2019,39(3):1117-1123. Ran H Z, Guo C H, Xiao X Y, et al. Effects of continuous application of soil amendments on cadmium availability in paddy soil and uptake by rice[J]. China Environmental Science, 2019,39(3):1117-1123.
[3]
王凯荣,张玉烛,胡荣桂.不同土壤改良剂对降低重金属污染土壤上水稻糙米铅镉含量的作用[J].农业环境科学学报, 2007,26(2):476-481. Wang K R, Zhang Y Z, Hu R G. Effects of different types of soil amelioration materials on reducing concentrations of Pb and Cd in brown rice in heavy metal polluted paddy soils[J]. Journal of Agro-Environment Science, 2007,26(2):476-481.
[4]
Zhou H, Zhou X, Zeng M, et al. Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil[J]. Ecotoxicology and Environmental Safety, 2014,101(3):226-232.
[5]
王林,徐应明,孙国红,等.海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J].生态环境学报, 2012,21(2):314-320. Wang L, Xu Y M, Sun G H, et al. Study on the effect and mechanism of sepiolite and phosphate on the remediation of Cd and Pb contaminated paddy soil[J]. Ecology and Environmental Sciences, 2012,21(2):314-320.
[6]
吴烈善,曾东梅,莫小荣,等.不同钝化剂对重金属污染土壤稳定化效应的研究[J].环境科学, 2015,36(1):309-313. Wu L S, Zeng D M, Mo X R, et al. Immobilization impact of different fixatives on heavy metals contaminated soil[J]. Environmental Science, 2015,36(1):309-313.
[7]
Ma J F, Tamai K, Yamaji N, et al. A silicon transporter in rice[J]. Nature, 2006,440(7084):688-691.
[8]
宫海军,陈坤明,王锁民,等.植物硅营养的研究进展[J].西北植物学报, 2004,24(13):2385-2392. Gong H J, Chen K M, Wang S M, et al. Advances in silicon nutrition of plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004,24(13):2385-2392.
[9]
刘鸣达,王丽丽,李艳利.镉胁迫下硅对水稻生物量及生理特性的影响[J].中国农学通报, 2010,26(13):187-190. Liu M D, Wang L L, Li Y L. Effectof Sion biomassand physiological characteristicsof riceunder Cd stress[J]. Chinese Agricultural Science Bulletin, 2010,26(13):187-190.
[10]
Shi X, Zhang C, Wang H, et al. Effect of Si on the distribution of Cd in rice seedlings[J]. Plant and Soil, 2005,272(1/2):53-60.
[11]
Farooq M A, Ali S, Hameed A, et al. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton[J]. Ecotoxicology and Environmental Safety, 2013,96(10):242-249.
[12]
Greger M, Kabir A H, Landberg T, et al. Silicate reduces cadmium uptake into cells of wheat[J]. Environmental Pollution, 2016,211(4):90-97.
[13]
贾茜茹,刘奋武,樊文华.硅对Cd胁迫下黄瓜苗期光合及抗氧化酶系统的影响[J].水土保持学报, 2018,32(4):321-326. Jia X R, Liu F W, Fan W H. Effects of silicon on photosynthesis and antioxidant enzymes of cucumber seedling under cadmium stress[J]. Journal of Soil and Water Conservation, 2018,32(4):321-326.
[14]
陈喆,铁柏清,雷鸣,等.施硅方式对稻米镉阻隔潜力研究[J].环境科学, 2014,35(7):2762-2770. Chen Z, Tie B Q, Lei M, et al. Phytoexclusion potential studies of Si fertilization modes on rice cadmium[J]. Environmental Science, 2014,35(7):2762-2770.
[15]
高子翔,周航,杨文弢,等.基施硅肥对土壤镉生物有效性及水稻镉累积效应的影响[J].环境科学, 2017,38(12):5299-5307. Gao Z X, Zhou H, Yang W T, et al. Impacts of silicon fertilizer as base manure on cadmium bioavailability in soil and on cadmium accumulation in rice plants[J]. Environmental Science, 2017,38(12):5299-5307.
[16]
刘永贤,潘丽萍,黄雁飞,等.外源喷施硒与硅对水稻籽粒镉累积的影响[J].西南农业学报, 2017,30(7):1588-1592. Liu Y X, Pan L P, Huang Y F, et al. Effects of selenium or silicon foliar fertilizer on cadmium accumulation in rice[J]. Southwest China Journal of Agricultural Sciences, 2017,30(7):1588-1592.
[17]
Chen G, Lei J, Huang Y, et al. Status of heavy metal contamination in paddy soil of Guangxi Province and effect of silicon fertilization on Cd content in brown rice[J]. Agricultural Science and Technology, 2016,17(1):96-99.
[18]
彭华,田发祥,魏维,等.不同生育期施用硅肥对水稻吸收积累镉硅的影响[J].农业环境科学学报, 2017,36(6):1027-1033. Peng H, Tian F X, Wei W, et al. Effects of silicon fertilizer application on the cadmium and silicon content of rice at different growth stages[J]. Journal of Agro-Environment Science, 2017,36(6):1027-1033.
[19]
徐颖菲,谢国雄,章明奎.改良剂配合水分管理减少水稻吸收土壤中镉的研究[J].水土保持学报, 2019,33(6):356-360. Xu Y F, Xie G X, Zhang M K. Reduction of cadmium uptake of rice plant from soil by application of amendments combined with water management[J]. Journal of Soil and Water Conservation, 2019,33(6):356-360.
[20]
徐奕,李剑睿,黄青青,等.坡缕石钝化与喷施叶面硅肥联合对水稻吸收累积镉效应影响研究[J].农业环境科学学报, 2016,35(9):1633-1641. Xu Y, Li J R, Huang Q Q, et al. Effect of palygorskite immobilization combined with foliar silicon fertilizer application on Cd accumulation in rice[J]. Journal of Agro-Environment Science, 2016,35(9):1633-1641.
[21]
吴玉俊,周航,朱维,等.碳酸钙和海泡石组配对水稻中Pb和Cd迁移转运的影响[J].环境工程学报, 2015,9(8):4047-4054. Wu Y J, Zhou H, Zhu W, et al. Effects of combined amendment (limestone+sepiolite) on translocation of Pb and Cd in rice[J]. Chinese Journal of Environmental Engineering, 2015,9(8):4047-4054.
[22]
GB 2762-2017食品安全国家标准食品中污染物限量[S]. GB 2762-2017 National food safety standardandlimit of pollutants in food[S].
[23]
何春娥,刘学军,张福锁.植物根表铁膜的形成及其营养与生态环境效应[J].应用生态学报, 2004,15(6):1069-1073. He C E, Liu X J, Zhang F S. Formation of iron plaque on root surface and its effect on plant nutrition and ecological environment[J]. Chinese Journal of Applied Ecology, 2004,15(6):1069-1073.
[24]
Zhou H, Zeng M, Zhou X, et al. Heavy metal translocation and accumulation in iron plaques and plant tissues for 32hybrid rice (Oryza sativa L.) cultivars[J]. Plant and Soil, 2015,386(1/2):317-329.
[25]
朱奇宏,黄道友,刘国胜,等.改良剂对镉污染酸性水稻土的修复效应与机理研究[J].中国生态农业学报, 2010,18(4):847-851. Zhu Q H, Huang D Y, Liu G S, et al. Effects and mechanisms of amendments on remediation of cadmium contaminated acid paddy soils[J]. Chinese Journal of Eco-Agriculture, 2010,18(4):847-851.
[26]
Rangel-Porras G, García-Magno J B, González-Muñoz M P. Lead and cadmium immobilization on calcitic limestone materials[J]. Desalination, 2010,262(1-3):1-10.
[27]
罗道成,易平贵,陈安国,等.改性海泡石对废水中Pb2+、Hg2+、Cd2+吸附性能的研究[J].水处理技术, 2003,29(2):89-91. Luo D C, Yi P G, Chen A G, et al. Adsorption of modified unchanged meerschaum on Pb2+、Hg2+ and Cd2+ in waste water[J]. 2003,29(2):89-91.
[28]
Chou J D, Wey M Y, Chang S H. Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure[J]. Journal of Hazardous Materials, 2009,162(2/3):1000-1006.
[29]
陈璐,文方,程艳.基于TCLP法的pH、盐度、粒径对尾矿重金属释放影响研究[J].新疆环境保护, 2016,38(2):18-22+50. Chen L, Wen F, Cheng Y. Effects of pH,salinity and size on release of heavy metals in Pb-Zn tailings based on toxicity characteristic leaching procedure (TCLP)[J]. Environmental Protection of Xinjiang, 2016,38(2):18-22+50.
[30]
刘丹丹,缪德仁,刘菲.不同提取方法对土壤中活性部分重金属提取能力的对比研究[J].安徽农业科学, 2009,37(35):17613-17615. Liu D D, Miao D R, Liu F. Comparison study on the extraction ability of some heavy metals in active parts of soils by different extrection methods[J]. Journal of Anhui Agricultural Sciences, 2009,37(35):17613-17615.
[31]
Guntzer F, Keller C, Meunier J D. Benefits of plant silicon for crops:a review[J]. Agronomy for Sustainable Development, 2012,32(1):201-213.
[32]
王会方,於朝广,王涛,等.硅缓解植物重金属毒害机理的研究进展[J].云南农业大学学报(自然科学), 2016,31(3):528-535. Wang H F, Yu C G, Wang T, et al. The research progresses on mitigative mechanism of silicon on heavy metal toxicity in plant[J]. Journal of Yunnan Agricultural University (Natural Science), 2016, 31(3):528-535.
[33]
高臣,刘俊渤,常海波,等.硅对水稻叶片光合特性和超微结构的影响[J].吉林农业大学学报, 2011,33(1):1-4. Gao C, Liu J B, Chang H B, et al. Effects of silicon on rice leaf photosynthesis and ultrastructure[J]. Journal of Jilin Agricultural University, 2011,33(1):1-4.
[34]
Yoshida S, Ohnishi Y,Kitagishi K. Histochemistry of silicon in rice plant:III. The presence of cuticle-silica double layer in the epidermal tissue[J]. Soil Science and Plant Nutrition, 1962,8(2):1-5.
[35]
Wang L, Wang Y, Chen Q, et al. Silicon induced cadmium tolerance of rice seedlings[J]. Journal of Plant Nutrition, 2000,23(10):1397-1406.
[36]
Tanaka K, Fujimaki S, Fujiwara T, et al. Cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.) treated with a nutrient solution containing cadmium[J]. Soil Science and Plant Nutrition, 2003,49(2):311-313.
[37]
Rodda M S, Li G, Reid R J. The timing of grain Cd accumulation in rice plants:the relative importance of remobilisation within the plant and root Cd uptake post-flowering[J]. Plant and Soil, 2011,347(1/2):105-114.
[38]
Otte M L, Rozema J, Koster L, et al. Iron plaque on roots of Aster tripolium L.:interaction with zinc uptake[J]. New Phytologist, 1989, 111(2):309-317.
[39]
刘春英,陈春丽,弓晓峰,等.湿地植物根表铁膜研究进展[J].生态学报, 2014,34(10):2470-2480. Liu C Y, Chen C L, Gong X F, et al. Progress in research of iron plaque on root surface of wetland plants[J]. Acta EcologicaSinica, 2014,34(10):2470-2480.
[40]
黄秋婵,黎晓峰,沈方科,等.硅对水稻幼苗镉的解毒作用及其机制研究[J].农业环境科学学报, 2007,26(4):1307-1311. Huang Q C, Li X F, Shen F K, et al. Cadmium resistance improved by silicon and corresponding mechanismsin Oryza sativas L. Seedlings[J]. Journal of Agro-Environment Science, 2007,26(4):1307-1311.
[41]
Wu C, Zou Q, Xue S G, et al. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL)[J]. Environmental Pollution, 2016,212(5):27-33.