Comparison of fungal community structure and diversity in typical paddy fields
YANG Xiang1, HUANG Xiao-ting1, WANG Chun1,2, WANG Xiao-tong3, YIN Xiao-lei1, LIN Shao-ying1, WANG Wei-qi1,2
1. Institute of Geography, Fujian Normal University, Fuzhou 350007, China; 2. Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; 3. College of Life Science, Fujian Normal University, Fuzhou 350117, China
Abstract:To understand the differences in fungal community structure and diversity in paddy field soils developed from different parent materials in the main rice growing areas of China, five typical paddy soils, i.e., latosol, red soil, saline alkali soil, black soil and purple soil, were analyzed for the fungi species composition and community diversity by high-throughput sequencing technology. Soil water content, pH, salinity, and bulk density were significantly different (P<0.05) beween the five typical paddy soils. Chao1index indicated that the richness of the fungal community in the paddy soil types was in the order of red soil > black soil > latosol > purple soil > saline-alkali soil. The ACE index suggested that the richness of the fungal communities was in the order of black soil > red soil > latosol > purple soil > saline-alkali soil. Both Shannon index and Simpson index of community diversity were in the order of black soil > purple soil > red soil > latosol > saline-alkali soil. The phylum with the highest relative abundance was Ascomycota in all five typical paddy soils. The dominant fungi genera were Emericellopsis, (Emericellopsis, Cladorrhinum and Zopfiella), (Emericellopsis and Monographella), and Phialocephala for the paddy soils developed from latosol and red soil, purple soil, black soil and saline alkali soil, respectively. The relative abundance of Xanthoria, Cyberlindnera, Penicillium, and Westerdykella were significantly and negatively correlated with soil pH (P<0.05). Furthermore, the relative abundance of Ceroophora was significantly and negatively correlated with soil water content, and the relative abundance of Sarocladium was significantly and positively with dissolved organic carbon (P<0.01) across soil types. The fungi community structure and diversity were significantly affected by the paddy soil developed from previous reclamation types, and the fungi genera richness and dominant genera were sensitive to the changes of soil physical and chemical properties.
阳祥, 黄晓婷, 王纯, 王晓彤, 尹晓雷, 林少颖, 王维奇. 典型稻田土壤真菌群落结构及多样性对比[J]. 中国环境科学, 2020, 40(10): 4549-4556.
YANG Xiang, HUANG Xiao-ting, WANG Chun, WANG Xiao-tong, YIN Xiao-lei, LIN Shao-ying, WANG Wei-qi. Comparison of fungal community structure and diversity in typical paddy fields. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(10): 4549-4556.
蔡元锋,吴宇澄,王书伟,等.典型淹水稻田土壤微生物群落的基因转录活性及其主要生理代谢过程[J]. 微生物学报, 2014,54(9):1033-1044. Cai Y F, Wu Y C, Wang S W, et al. Microbial metabolism in typical flooded paddy soils[J]. Acta Microbiologica Sinica, 2014,54(9):1033-1044.
[2]
Yuan H Z, Ge T D, Zhou P, et al. Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils[J]. Journal of Soils and Sediments, 2013,13(5):877-886.
[3]
Wang J C, Song Y, Ma T F, et al. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil[J]. Applied Soil Ecology, 2017,112:42-50.
[4]
侯海军,张文钊,沈建林,等.水分管理对稻田细菌丰度与群落结构的影响[J]. 生态环境学报, 2016,25(9):1431-1438. Hou H J, Zhang W Z, Shen J L, et al. Effect of water management on soil bacterial abundance and community in the rice paddy field[J]. Ecology and Environmental Sciences, 2016,25(9):1431-1438.
[5]
张于光,张小全,曲良建,等.土地利用变化对土壤真菌群落结构的影响[J]. 生态学报, 2007,27(10):4325-4332. Zhang Y G, Zhang X Q, Qu L J, et al. The impact of land use changes on soil fungal community and structure[J]. Acta Ecologica Sinica, 2007,27(10):4325-4332.
[6]
Ok Y S, Usman R A, Lee S S, et al. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil[J]. Chemosphere, 2011,85(4):677-682.
[7]
朱永官,沈仁芳,贺纪正,等.中国土壤微生物组:进展与展望[J]. 中国科学院院刊, 2017,32(6):554-565,542. Zhu Y G, Shen R F, He J Z, et al. China soil microbiome initiative:progress and perspective[J]. Bulletin of Chinese Academy of Sciences, 2017,32(6):554-565,542.
[8]
罗鑫,张海燕,刘明元,等.稻田土壤微生物群落多样性研究进展[J]. 安徽农业科学, 2018,46(21):42-43,47. Luo X, Zhang H Y, Liu M Y, et al. Study review on microbial community diversity in paddy soils[J]. Journal of Anhui Agricultural Sciences, 2018,46(21):42-43,47.
[9]
王轶,李季,曹志平,等.长期施肥对农田土壤真菌的影响[J]. 中国生态农业学报, 2014,22(11):1267-1273. Wang Y, Li J, Cao Z P, et al. Effects of long-term fertilization on soil fungi[J]. Chinese Journal of Eco-Agriculture, 2014,22(11):1267-1273.
[10]
曹焜,荆瑞勇,周颖,等.吡嘧磺隆对稻田土壤真菌群落结构及土壤酶活性的影响[J]. 水土保持研究, 2016,23(2):73-77. Cao K, Jing R Y, Zhou Y, et al. Effects of Pyrazosulfuron-ethyl on soil fungal community structure and enzyme activity[J]. Research of Soil and Water Conservation, 2016,23(2):73-77.
[11]
闫华,欧阳明,张旭辉,等.不同程度重金属污染对稻田土壤真菌群落结构的影响[J]. 土壤, 2018,50(3):513-521. Yan H, Ou Y M, Zhang X H, et al. Effects of different gradients of heavy metal contamination on soil fungi community structure in paddy soils[J]. Soils, 2018,50(3):513-521.
[12]
李会琳,路璐.多环芳烃对不同类型稻田土壤硝化潜势及氨氧化微生物的影响[J]. 应用与环境生物学报, 2019,25(3):584-592. Li H L, Lu L. Effects of polycyclic aromatic hydrocarbons (PAHs) on nitrification potential and the abundance and community composition of ammonia-oxidizing microorganisms in different types of paddy soils in China[J]. Chinese Journal of Applied and Environmental Biology, 2019,25(3):584-592.
[13]
陈丹梅,袁玲,黄建国,等.长期施肥对南方典型水稻土养分含量及真菌群落的影响[J]. 作物学报, 2017,43(2):286-295. Chen D M, Yuan L, Huang J G, et al. Influence of long-term fertilizations on nutrients and fungal communities in typical paddy soil of south China[J]. Acta Agronomica Sinica, 2017,43(2):286-295.
[14]
石敏,肖伟华,王春梅,等.施肥与灌溉对黑土区稻田氮素渗漏淋溶的影响[J]. 南水北调与水利科技, 2016,14(1):42-49. Shi M, Xiao W H, Wang C M, et al. Influence of fertilization and irrigation on nitrogen percolation leaching in black soil region[J]. South-to-North Water Transfers and Water Science & Technology, 2016,14(1):42-49.
[15]
程教擘,陈力力,李梦丹,等.不同耕作方式对稻田土壤微生物的影响[J]. 湖南农业科学, 2017,3(8):8-10. Cheng J B, Chen L L, Li M D, et al. Effects of different tillage methods on soil microorganisms in rice field[J]. Hunan Agricultural Sciences, 2017,3(8):8-10.
[16]
Zhu Y G, Su J Q, Cao Z, et al. A buried Neolithic paddy soil reveals loss of microbial functional diversity after modern rice cultivation[J]. Science Bulletin, 2016,61(13):1052-1060.
[17]
王晓彤,许旭萍,王维奇.模拟酸雨对福州平原稻田土壤真菌群落结构及多样性影响[J]. 环境科学学报, 2019,39(7):2249-2259. Wang X T, Xu X P, Wang W Q. Effects of simulated acid rain on paddy soils fungi community structure and diversity in Fuzhou Plain[J]. Acta Scientiae Circumstantiae, 2019,39(7):2249-2259.
[18]
鲁如坤.土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 1999. Lu R K. Soil agrochemistry analysis protocoes[M]. Beijing:China Agricultural Science Press, 1999.
[19]
许晴,张放,许中旗,等.Simpson指数和Shannon-Wiener指数若干特征的分析及"稀释效应"[J]. 草业科学, 2011,28(4):527-531. Xu Q, Zhang F, Xu Z Q, et al. Some characteristics of Simpson index and the Shannon-Wiener index and their dilution effect[J]. Pratacultural Science, 2011,28(4):527-531.
[20]
Drenovsky R E, Vo D, Graham K J, et al. Soil water content and organic carbon availability are major determinants of soil microbial community composition[J]. Microbial Ecology, 2004,48(3):424-430.
[21]
迟美静,侯玮,孙莹,等.东北黑土区荒地开垦种稻后土壤养分及pH值的变化特征[J]. 土壤通报, 2018,49(3):546-551. Chi M J, Hou W, Sun Y, et al. Characteristics of soil nutrient and pH value of paddy field with different planted years in black soil region of northeast China[J]. Chinese Journal of Soil Science, 2018,49(3):546-551.
[22]
邓勋,宋小双,尹大川,等.盐胁迫对2株深色有隔内生真菌(DSE)生长及营养代谢的影响[J]. 中南林业科技大学学报, 2015,35(5):1-8. Deng X, Song X S, Yin D C, et al. Effects of salt stress on growth and nutritional metabolism of two dark septate endophyte (DSE)[J]. Journal of Central South University of Forestry & Technology, 2015,35(5):1-8.
[23]
魏万玲,程永毅,周志峰,等.水分含量对紫色土自养微生物丰度与活性的影响[J]. 生态学杂志, 2020,39(2):541-548. Wei W L, Cheng Y Y, Zhou Z F, et al. Effects of water content on the abundance and activity of autotrophic microbes in purple soil[J]. Chinese Journal of Ecology, 2020,39(2):541-548.
[24]
邓娇娇,周永斌,殷有,等.辽东山区两种针叶人工林土壤真菌群落结构特征[J]. 北京林业大学学报, 2019,41(9):130-138. Deng J J, Zhou Y B, Yin Y, et al. Characteristics of soil fungal community structure at two coniferous plantations in mountainous region of eastern Liaoning Province, northeastern China[J]. Journal of Beijing Forestry University, 2019,41(9):130-138.
[25]
Bridge P D, Newsham K K. Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning[J]. Fungal Ecology, 2009,2(2):66-74.
[26]
王芳,图力古尔.土壤真菌多样性研究进展[J]. 菌物研究, 2014, 12(3):178-186. Wang F, Tu L G E. Research advances in the diversity of soil fungi[J]. Journal of Fungal Research, 2014,12(3):178-186.
[27]
De Deyn G B. Plant functional traits and soil carbon sequestration in contrasting biomes[J]. Ecology Letters, 2008,11(5):16-53.
[28]
Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land[J]. Soil Biology and Biochemistry, 2002,34(9):1299-1307.
[29]
Raich J W, Clark D A, Schwendenmann L, et al. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment[J]. PloS One, 2014,9(6):e100275.
[30]
盛浩,周萍,袁红,等.亚热带不同稻田土壤微生物生物量碳的剖面分布特征[J]. 环境科学, 2013,34(4):1576-1582. Sheng H, Zhou P, Yuan H, et al. Profile of soil microbial biomass carbon in different types of subtropical paddy soils[J]. Environmental Science, 2013,34(4):1576-1582.
[31]
鲁青原,郝春博.丛枝菌根真菌(AMF)在土壤固碳中的作用[J]. 海洋地质前沿, 2016,32(8):41-46. Lu Q Y, Hao C B. AMF helps in carbon sequestration in soil[J]. Marine Geology Frontiers, 2016,32(8):41-46.