The effect of artificial forced mixingand oxygenating on the bacterial community succession in the stratified reservoir
ZHANG Han1,2, HUANG Ting-lin1,2, LI Nan1,2, ZHANG Hai-han1,2, QI Yun-zhi3, SI Fan1,2, LU Lin-chao1,2, WANG Chen-xu1,2
1. Shanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2. Key Laboratory of Northwest Water Resource, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China;
3. Xi'an Water Group HeiheJinpen Reservoir Management Company, Xi'an 710401, China
To explore the influence of artificial forced mixing and oxygenating on the bacterial community structure, we analyzed the bacterial community structure in Xi'an Jinpen reservoir from August 2018 to April 2019. The results showed that Cyanobacteria、Actinobacteria and Proteobacteria were the dominating bacteriaes in the whole water. The abundance of Cyanobacteria decreased from 11.7%~19.2% to 6.3%~8.9% due to the artificial forced mixing and oxygenating. The abundance of Cyanobacteria decreased from 18.3%、11.7%、19.2% to 8.9%、6.3%、7.9% in surface、middle and bottom water. The difference of the bacteria structure and the dispersion between samples were reduced because of the artificial forced mixing effect. Theabundances of Actinobacteria and Proteobacteria gradually change from "middle > bottom > surface" and "surface > bottom > middle" to be consistent in the surface、middle and bottom water. Thecontent of dissolved oxygen and the abundance of aerobic bacteria were increased due to the artificial forced oxygenation effect at the bottom. The abundances of Polynucleobacter、Methylocystis、Methylobacter increased from 0.06%、0.18%、0.02% to 1.06%、2.20%、1.96%. According to the redundancy analysis, the mainfactors that affected bacterial community composition were the thermal stratification stability,water temperature, DO, TP and TN.
张晗, 黄廷林, 李楠, 张海涵, 齐允之, 司凡, 路林超, 王晨旭. 人工强制混合充氧对分层型水库细菌群落演替的影响[J]. 中国环境科学, 2020, 40(4): 1732-1739.
ZHANG Han, HUANG Ting-lin, LI Nan, ZHANG Hai-han, QI Yun-zhi, SI Fan, LU Lin-chao, WANG Chen-xu. The effect of artificial forced mixingand oxygenating on the bacterial community succession in the stratified reservoir. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(4): 1732-1739.
Newton R J, Jones S E, Eiler A, et al. A Guide to the natural history of freshwater lake bacteria[J]. Microbiology and molecular biology reviews, 2011,75(1):14-49.
[2]
Riemann L, Steward G F, Azam F. Dynamics of bacterial community composition and activity during a mesocosmdiatombloom[J]. Applied and Environmental Microbiology, 2000,66(2):578-587.
[3]
Fandino L B, Riemann L, Steward G F, et al. Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNAsequencing[J]. Aquatic Microbial Ecology, 2001,23(2):119-130.
[4]
王鹏,陈波,李传琼,等.赣江南昌段丰水期细菌群落特征[J]. 中国环境科学, 2016,36(8):2453-2462. Wang P, Chen B, Li C Q, et al. Bacterial communities in Nanchang section of the Ganjiangriver in wet season[J]. China Environmental Science, 2016,36(8):2453-2462.
[5]
周菁,余正,刘开国,等.典型亚热带热分层水库秋季细菌群落垂直分布[J]. 生态学报, 2014,34(21):6205-6213. Zhou J, Yu Z, Liu K G, et al. Bacterial community and its relation to environmental variables in a subtropicalstratified reservoir for drinking water supply in autumn[J]. Acte Ecologica Sinica, 2014,34(21):6205-6213.
[6]
曹新益,徐慧敏,王司辰,等.南京莫愁湖与紫霞湖浮游细菌群落结构的季节性变化及其与环境因子的关系[J]. 化学与生物工程, 2016, 33(12):19-26. Cao X Y, Xu H M, Wang S C, et al. Seasonal variation of bacterioplankton community structure and its relationship with environmental factors of Mochou Lake and Zixia Lake in Nanjing[J]. Chemistry & Bioengineering, 2016,33(12):19-26.
[7]
程豹,望雪,徐雅倩,等.澜沧江流域浮游细菌群落结构特征及驱动因子分析[J]. 环境科学, 2018,39(8):3649-3659. Cheng B, Wang X, Xu Y Q, et al. Bacterioplankton community structure in the Lancang River basin and the analysis of its driving environmental factors[J]. Environmental Science, 2018,39(8):3649-3659.
[8]
丛海兵,黄廷林,缪晶广,等.水体修复装置-扬水曝气器的开发[J]. 中国给水排水, 2005,21(3):41-45. Cong H B, Huang T L, Liao J G, et al. Development of rehabilitation device for water body-water lifting aerator[J]. China Water & Wastewater, 2005,21(3):41-45.
[9]
丛海兵,黄廷林,缪晶广,等.扬水曝气器的水质改善功能及提水、充氧性能研究[J]. 环境工程学报, 2007,1(1):7-13. Cong H B, Huang T L, Liao J G, et al. Study on water improvement function, capacity of lifting water and oxygenation of a water-lifting aerator[J]. Chinese Journal of Environmental Engineering, 2007,1(1):7-13.
[10]
李建军.扬水曝气技术改善汾河水库水源水质的应用研究[D]. 西安:西安建筑科技大学, 2007. Li J J. The research on the water-lifting aeration in the treatment of Fenhe reservoir source water[D]. Xi'an:Xi'an University of Architecture and Technology, 2007.
[11]
李璇.分层型富营养化水源水库水质演变机制与水质污染控制[D]. 西安:西安建筑科技大学, 2015. Li X. Study on the evolvement mechanism of water quality and its in-situ pollution control in a stratified and eutrophic reservoir[D]. Xi'an:Xi'an University of Architecture and Technology, 2015.
[12]
李扬.分层型水源水库水温模拟及扬水曝气系统运行优化研究[D]. 西安:西安建筑科技大学, 2018. Li Y. Water temperature simulation of a stratified source water reservoir and optimal operation of water-lifting aerator system[D]. Xi'an:Xi'an University of Architecture and Technology, 2018.
[13]
马越,郭庆林,黄廷林,等.西安黑河金盆水库季节性热分层的水质响应特征[J]. 水利学报, 2013,44(4):406-415. Ma Y, Guo Q L, Huang T L, et al. Water quality response characteristics of seasonal thermal stratification in Jinpen reservoir[J]. Shui Li XueBao, 2013,44(4):406-415.
[14]
国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.中国环境科学出版社, 2002:200-415. The State Environmental Protection Administration The Water and Wastewater Monitoring Analysis Method Editorial Board. Water and wastewater monitoring analysismethod[M]. 4th Edition. Beijing:China Environmental Science Press, 2002:200-415.
[15]
钱玮,张济凡,张铭连,等.太湖湖滨湿地浮游细菌群落结构及时间动态[J]. 基因组学与应用生物学, 2018,37(12):5325-5331. Qian W, Zhang J F, Zhang M L, et al. Community structure and temporal dynamics of bacterioplankton in lakeside wetland of Tai Lake[J]. Genomics and Applied Biology, 2018,37(12):5325-5331.
[16]
Lawson R, Anderson M A. Stratification and mixing in Lake Elsinore, California:An assessment of axial flow pumps for improving water quality in a shallow eutrophic lake[J]. Water Research, 2007,41(19):4457-4467.
[17]
Hagstrom A, Pommier T, Rohwer F, et al. Use of 16S ribosomal DNA for delineation of marine bacterioplanktonspecies[J]. Appliedand Environmental Microbiology, 2002,68(7):3628-3633.
[18]
Yang X, Huang T L, Zhang H H. Effects of seasonal thermal stratification on the functional diversity and composition of the microbial community in a drinking water reservoir[J]. Water, 2015, 7(10):5525-5546.
[19]
Oberauner L, Zachow C, Lackner S, et al. The ignored diversity:complex bacterial communities in intensive care units revealed by 16S pyrosequencing[J]. Scientific Reports, 2013,3(3):1413.
[20]
Jami E, Israel A, Kotser A, et al. Exploring the bovine rumen bacterial community from birth to adulthood[J]. The ISME Journal, 2013, 7(6):1069-1079.
[21]
邹胜章,邓振平,梁彬,等.岩溶水系统中微生物迁移机制[J]. 环境污染与防治, 2010,32(10):1-4. Zou S Z, Deng Z P, Liang B, et al. The mechanism of microbe transport in karst aquifer systems[J]. Environmental Pollution & Control, 2010,32(10):1-4.
[22]
杨霄.分层型水库水体细菌群落演变机制与扬水曝气强化作用研究[D]. 西安:西安建筑科技大学, 2016. Yang X. Study on the evolvement mechanism of aquatic bacteria community and its enhanced effect by water-lifting aerator in stratified reservoir[D]. Xi'an:Xi'an University of Architecture and Technology, 2016.
[23]
Jezbera J, JitkaJezberová, Vojtěch Kasalický, et al. Patterns of Limnohabitansmicrodiversity across a large set of freshwater habitats as revealed by reverse line blot hybridization[J]. PLOS ONE, 2013,8(3):e58527.
[24]
Rodrigues D F, Ederson D C J, Ayala-del-Río, et al. Biogeography of two cold-adapted genera:Psychrobacter and Exiguobacterium[J]. Isme Journal, 2009,3(6):658-665.
[25]
Mccammon S A, Innes B H, Bowman J P, et al. Flavobacterium hibernum sp. nov.a lactose-utilizing bacterium from a freshwater Antarctic Lake[J]. International Journal of Systematic Bacteriology, 1998,48(4):1405-1412.
[26]
Hahn M W, Pockl M, Wu Q L. Low intraspecific diversity in a Polynucleobactersubcluster population numerically dominating bacterioplankton of a freshwater pond[J]. Applied and Environmental Microbiology, 2005,71(8):4539-4547.
[27]
Dedysh S N, Belova S E, Bodelier P L E, et al. Methylocystisheyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs[J]. International Journal of Systematic and Evolutionary Microbiology, 2007,57(3):472-479.
[28]
刘菊梅.乌梁素海湿地挺水植物根圈脱氮甲烷氧化菌群多样性及分布特征研究[D]. 内蒙古:内蒙古大学, 2018. Liu J M. Diversity of denitrifying methantrophs and their distribution in root zone of three emergent macrophytes in eutrophic Wuliangsu haiwetland[D]. Inner Mongolia:Inner Mongolia University, 2018.
[29]
周石磊.混合充氧强化水源水库贫营养好氧反硝化菌的脱氮特性及技术应用研究[D]. 西安:西安建筑科技大学, 2017. Zhou S L. Nitrogen removal characteristics of indigenous-oligotrophic aerobic denitrifiers via in situ oxygen enhancement and technology application research[D]. Xi'an:Xi'an University of Architecture and Technology, 2017.
[30]
陈兆进,丁传雨,朱静亚,等.丹江口水库枯水期浮游细菌群落组成及影响因素研究[J]. 中国环境科学, 2017,37(1):336-344. Chen Z J, Ding C Y, Zhu J Y, et al. Community structure and influencing factors of bacterioplankton during low water periods in Danjiangkoureservoir[J]. China Environmental Science, 2017,37(1):336-344.
[31]
魏玉秋,孙军,丁昌玲.2014年夏季南海北部超微型浮游植物分布及环境因子影响[J]. 海洋学报, 2015,37(12):56-65. Wei Y Q, Sun J, Ding C L. Distribution and environmental impact factors of picoplankton in the northern south China sea in summer 2014[J]. HaiyangXuebao, 2015,37(12):56-65.