Analysis of an episode of a black storm moving eastward from Xinjiang based on multi-source data and model simulation
HUANG Guan1,2, GUO Zi-jia1, ZHOU Ya-man4, SU Xiao-lan3, LIU Xin1, CHEN Yong-hang1, ZHOU Hai-jiang1, YANG Lin-pei1
1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; 2. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China; 3. Xinjiang Uygur Autonomous Region Meteorological Service Center, Urumqi 830002, China; 4. Xinjiang Meteorological Observatory, Urumqi 830002, China
Abstract:Multi-Source monitoring data from satellite remote sensing, environmental monitoring and meteorological observation were comprehensively used to analyze the generation source, path and development process of a black storm in Xinjiang in April 2015 combining backward trajectory model. The results show that the pollutants at different heights during the black storm mainly from Xinjiang and its west of the Central Asia region along with the airflow, entered the northern Xinjiang accompanied by the southwest airflow almost at the same time, piled up along the Tianshan Mountains and then crossed the mountains into southern Xinjiang. Meanwhile, four typical cities (Urumqi, Hohhot, Lanzhou and Beijing) affected by the east transport of pollutants from the black storm were selected to analyze the influence of large amounts of dust aerosols on major meteorological parameters during the eastward transport of the black storm using regional climate model (RegCM4.6).The results show that the AOD for the four typical cities affected by the black storm's eastward transport during April 25~29 all increased, and the simulated pollution level was close to the actual. For the temperature response of the dusts at 2m near the surface, Beijing was the most visible, up to -1.68℃, while was not obvious at Urumqi, where the temperature near the ground during the dust episode decreased by 0.1℃ at the highest compared with that without dusts. When AOD reaches its maximum value, the temperature response of Hohhot and Lanzhou is -0.4℃ and -0.8℃ respectively. During the black strom episode, the maximum relative humidity response in Urumqi, Hohhot and Lanzhou was -3.3%, -7.3% and -4.7%, respectively, while the relative humidity in Beijing increased by about 10% compared with that without dusts when the AOD reached its maximum value on 29th.
黄观, 郭子嘉, 周雅蔓, 苏小岚, 刘鑫, 陈勇航, 周海江, 杨林沛. 基于多源数据和模式模拟的新疆黑风暴东移个例分析[J]. 中国环境科学, 2021, 41(4): 1530-1539.
HUANG Guan, GUO Zi-jia, ZHOU Ya-man, SU Xiao-lan, LIU Xin, CHEN Yong-hang, ZHOU Hai-jiang, YANG Lin-pei. Analysis of an episode of a black storm moving eastward from Xinjiang based on multi-source data and model simulation. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(4): 1530-1539.
王式功,董光荣,陈惠忠,等.沙尘暴研究的进展[J]. 中国沙漠, 2000, 20(4):349-356. Wang S G, Dong G R, Chen H Z, et al. Advances in studying sand-dust storms of China[J]. J Desert Res, 2000,20(4):349-356.
[2]
任宜勇.新疆决策气象服务指导手册[M]. 乌鲁木齐:新疆大学出版社, 2006:11. Ren Y Y. Xinjiang guide manual of policy-making meteorological service[M]. Urumqi:Xinjiang University press, 2006:11.
[3]
李建云,屈述军.中国地区春季沙尘气溶胶短波辐射气候效应数值模拟研究[J]. 气象与减灾研究, 2010,33(4):23-30. Li J Y, Qu X J. The Simulation of radiative climatic effects on the soil-derived afrosol in China[J]. Meteorology and Disaster Reduction Research, 2010,33(4):23-30.
[4]
张小曳.亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J]. 第四纪研究, 2001,21(I):29-40. Zhang X Y. Source distributions emisson, transport, deposition of Asian dust and loess accumulation[J]. Quaternary Sciences, 2001, 21(I):29-40.
[5]
罗藤灵,张卫民,余意,等.新疆塔克拉玛干沙漠沙尘暴统计分析[C]. 中国气象学会,第35届中国气象学会年会.合肥:2018. Lou T L, Zhang W M, Yu Y, et al. Statistical analysis of sandstorm in Taklimakan Desert, Xinjiang[C]. The 35th Annual Meeting of the Chinese Meteorological Society, Hefei, 2018.
[6]
柳丹,张武,陈艳,等.基于卫星遥感的中国西北地区沙尘天气发生机理及传输路径分析[J]. 中国沙漠, 2014,34(6):1605-1616. Liu D, Zhang W, Chen Y, et al. Analysis of the mechanism and transmission of dust in Northwest China based on satellite remote-sensing data[J]. J Desert Res, 2014,34(6):1605-1616.
[7]
史珺,李明财,曹经福,等.天津市典型办公建筑极端能耗气候响应特征分析[J]. 气象与环境学报, 2016,32(2):72-78. Shi J, Li M C, Cao J F, et al. Responses of extreme energy consumption of typical office building to climate in Tianjin[J]. Journal of Meteorology and Environment, 2016,32(2):72-78.
[8]
张君霞,黄倩,田文寿,等.对流冷池对黑风暴沙尘抬升和传输影响的大涡模拟研究[J]. 高原气象, 2018,37(3):850-862. Zhang J X, Huang Q, Tian W S, et al. Large eddy simulation study of effects of convective cold pools on dust-uplift and transportion of black storm[J]. Plateau Meteorology, 2018,37(3):850-862.DOI:10.7522/j.issn.1000-0534.2018.00046.
[9]
陈勇航,毛晓琴,黄建平,等.一次强沙尘输送过程中气溶胶垂直分布特征研究[J]. 中国环境科学, 2009,29(5):449-454. Chen Y H, Mao X Q, Huang J P, et al. Vertical distribution characteristics of aerosol during a long-distance transport of heavy dust pollution[J]. China Environmental Science, 2009,29(5):449-454.
[10]
刘立忠,么远,韩婧,等.西安市大气颗粒物数浓度分布及典型天气条件特征变化[J]. 中国环境科学, 2015,35(12):3588-3594. Liu L Z, Yao Y, Han J, et al. Distribution of atmospheric particle number concentration in Xi'an and variations in typical weather conditions[J]. China Environmental Science, 2015,35(12):3588-3594.
[11]
周旭,张镭,陈丽晶,等.沙尘暴过程中沙尘气溶胶对气象场的影响[J]. 高原气象, 2017,36(5):1422-1432. Zhou X, Zhang L, Chen L J, et al. Influence of the dust aerosols on meteorological fields during dust storm[J]. Plateau Meteorology, 2017,36(5):1422-1432.
[12]
邱金桓,孙金辉.沙尘暴的光学遥感及分析[J]. 大气科学, 1994, 18(1):1-10. Qiu J H, Sun J H. Optically remote sensing of the dust storm and result analysis[J]. Sciertia Atmospherica Sinica, 1994,18(1):1-10.
[13]
胡俊,钟珂,亢燕铭,等.新疆典型城市气溶胶光学厚度变化特征[J]. 中国环境科学, 2019,39(10):4074-4081. Hu J, Zhong K, Kang Y M, et al. Variation in aerosol optical depth over the typical cities in the Xinjiang region[J]. China Environmental Science, 2019,39(10):4074-4081.
[14]
Tegen I, Lacis A A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol[J]. Journal of Geophysical Research:Earth Surface, 1996,101(D14):19237-19244.
[15]
王娜,张镭.沙尘气溶胶辐射特性及其观测方法初步评述[J]. 干旱气象, 2007,(4):68-73. Wang N, Zhang L. Preliminary summary on radiative properties and observation mehtods of the dust aerosol[J]. Ard Meteorology, 2007, (4):68-73.
[16]
Huang J P, Minnis P, Chen B, et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J]. J. Geophys.Res., 2008,113(23212).
[17]
申莉莉,盛立芳,陈静静.一次强沙尘暴过程中的沙尘气溶胶空间分布的初步分析[J]. 中国沙漠, 2010,30(6):1483-1489. Shen L L, Sheng L F, Chen J J. Prelimnary analysis of the spatial distribution of the dust aerosol in a heavy dust storm[J]. J Desert Res, 2010,30(6):1483-1489.
[18]
马井会,张国琏,耿福海,等.上海地区一次典型连续浮尘天气过程分析[J]. 中国环境科学, 2013,33(4):584-593. Ma J H, Zhang G L, Geng F H, et al. Analysis of a typical dust event in Shanghai[J]. China Environmental Science, 2013,33(4):584-593.
[19]
廖志恒,范绍佳,黄娟,等.2013年10月长株潭城市群一次持续性空气污染过程特征分析[J]. 环境科学, 2014,35(11):4062-4068. Liao Z H, Fan S J, Huang J, et al. Characteristic analysis of a multi-day pollution event in Chang-Zhu-Tan Metropolitan Area During October 2013[J]. Environmental Science, 2014,33(4):584-593.
[20]
陈烨鑫,朱彬,尹聪,等.基于卫星遥感和地面观测资料分析苏皖两省一次空气污染过程[J]. 中国环境科学, 2014,34(4):827-836. Chen Y X, Zhu B, Yin C, et al. A continuous air pollution event in Jiangsu and Anhui provinces based on satellite remote sensing and field observations[J]. China Environmental Science, 2014,34(4):827-836.
[21]
池梦雪,张宝林,王涛,等.2000~2018年黄土高原沙尘天气遥感监测及尘源分析[J]. 科学技术与工程, 2019,19(18):380-388. Chi M X, Zhang B L, Wang T, et al. Remote sensing and source analysis of aeolian dust in Loess Plateau during 2000~2018[J]. Science Technology and Engineering, 2019,19(18):380-388.
[22]
Qi Y L, Ge J M, Huang J P. Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET[J]. Atmospheric Science, 2013,58(20):2497-2506.
[23]
Huang J P, Minnis P, Lin B, et al. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements[J]. Geophysical Research Letters, 2006,332(21):1522-1534.
[24]
Huang J P, Lin B, Minnis P, et al. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia[J]. Geophys. Res. Lett., 2006,33(19):9802-1-19802-5.
[25]
Huang J P, Wang Y, Wang T, et al. Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia[J]. Progress in Natural Science, 2006,16(10):1084-1089.
[26]
Ashpole I, Washington R. A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking[J]. Journal of Geophysical Research:Atmospheres, 2013,118(13):6981-6995.
[27]
Filonchyk M, Yan H, Shareef T M E, et al. Aerosol contamination survey during dust storm process in Northwestern China using ground, satellite observations and atmospheric modeling data[J]. Theoretical and Applied Climatology, 2018,(12):1-15.
[28]
薛文博,武卫玲,付飞,等.2015.中国2013年1月PM2.5重污染过程卫星反演研究[J]. 环境科学, 2015,36(3):794-800. Xue W B, Wu W L, Fu F, et al. Satellite retrieval of a heavy pollution process in January 2013 in China[J]. Environmental Science, 2015, 36(3):794-800.
[29]
Huang G, Liu Q, Wang Y Y, et al. The accuracy improvement of clear-sky surface shortwave radiation derived from CERES SSF dataset with a simulation analysis[J]. Science of the Total Environment, 2020,749:141671.
[30]
Kaufman Y J, Tanre D, Gordon H R, et al. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect[J]. Journal of Geophysical Research, 1997,102(D14):16815-16830.
[31]
高大伟,徐宏辉,郁珍艳,等.MODIS气溶胶光学厚度在临安大气颗粒物监测中的应用[J]. 环境科学研究, 2012,25(7):739-744. Gao D W, Xu H H, Yu Z Y, et al. Application of MODIS aerosol optical depth in monitoring PM10 concentrations in Lin'an[J]. Research of Environmental Sciences, 2012,25(7):739-744.
[32]
郑卓云,陈良富,郑君瑜,等.高分辨率气溶胶光学厚度在珠三角及香港地区区域颗粒物监测中的应用研究[J]. 环境科学学报, 2011, 31(6):1154-1161. Zheng Z Y, Chen L F, Zheng J Y, et al. Application of retrieved high-resolution AOD in regional PM monitoring in the Pearl River Delta and Hong Kong region[J]. Acta Scientiae Circumstantiae, 2011, 31(6):1154-1161.
[33]
Huang G, Chen Y H, Li Z Q, et al.Validation and accuracy analysis of the collection 6.1MODIS aerosol optical depth over the westernmost city in China based on the Sun-Sky Radiometer Observations from SONET[J]. Earth and Space Science, 2020,7(3):e2019EA001041.
[34]
Huang J, Minnis P, Chen B, et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J]. Journal of Geophysical Research:Atmospheres, 2008,113(D23):1-13.
[35]
Wang X, Huang J, Zhang R, et al. Surface measurements of aerosol properties over northwest China during ARM China 2008 deployment[J]. Journal of Geophysical Research, 2010,115(D7):1-13.
[36]
杨志华,张旭,毛炜峰.基于FY-3B/VIRR数据的新疆沙尘天气遥感监测应用研究[J]. 沙漠与绿洲气象, 2014,8(5):48-52. Yang Z H, Zhang X, Mao W Y. The remote sensing monitoring application research in dust weather of Xinjiang based on FY-3B/VIRR Data[J]. Desert and Oasis Meteorology, 2014,8(5):48-52.
[37]
王文彩.沙尘气溶胶的传输和气候效应的观测研究[D]. 兰州:兰州大学, 2013. Wang W C. Observation study of dust aerosols' transport and climate effect[D]. Lanzhou:Lanzhou University, 2013.