Analysis based on GAM model for the relationship between chlorophyll a concentration and environmental factors in Dongting Lake
YAN Guang-han1,2,3, YIN Xue-yan1,2,3, WANG Xing1,2,3, WANG Li-jing3,4, LI Dan1,2, TIAN Ze-bin1,2,3, LI Hong3,4
1. National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 2. State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 3. State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, Chinese Research Academy of Environmental Sciences, Yueyang 414000, China; 4. Research Center of Ecological Environment for Yangtze River Economic Belt, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract:From January to December in 2019, the samples were collected in Dongting Lake to analyze the correlation between the chlorophyll a distribution and concentration with environmental factors by using the generalized additive model (GAM). The results showed the strong temporal and spatial variations of chlorophyll a concentration appeared, annual average value was 5.77μg/L ranging from 1.00 to 67.33μg/L for the single influencing factor GAM model. The most influential factors in the variations of chlorophyll a concentration differed among seasons, with CODMn, Cond and TP for spring; CODMn, WT and Cond for summer and autumn respectively; NH4+-N and Cond for winter. For the multiple influencing factors GAM model the explanation result was better with an overall rate for 97.5% for the variations in chlorophyll a concentration. The environmental factors affecting the variations in chlorophyll a concentration ranked as CODMn>TP>Cond>NH4+-N>TN/TP, and all factors exhibited a non-linear relationship with chlorophyll a concentration.
严广寒, 殷雪妍, 汪星, 王丽婧, 李丹, 田泽斌, 李虹. 基于GAM模型的洞庭湖叶绿素a浓度与环境因子相关性分析[J]. 中国环境科学, 2022, 42(1): 313-322.
YAN Guang-han, YIN Xue-yan, WANG Xing, WANG Li-jing, LI Dan, TIAN Ze-bin, LI Hong. Analysis based on GAM model for the relationship between chlorophyll a concentration and environmental factors in Dongting Lake. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(1): 313-322.
秦伯强, 高光, 朱广伟, 等. 湖泊富营养化及其生态系统响应[J]. 科学通报, 2013, 58(10): 855-864. Qin B Q, Gao G, Zhu G W et al. Lake eutrophication and its ecosystem response [J]. Chinese Science Bulletin, 2013, 58(10): 855-864.
[2]
朱广伟, 许海, 朱梦圆, 等. 三十年来长江中下游湖泊富营养化状况变迁及其影响因素[J]. 湖泊科学, 2019, 31(6): 1510-1524. Zhu G W, Xu H, Zhu M Y, et al. Changing characteristics and driving factors of trophic state of lakes in the middle andl ower reaches of Yangtze River in the past 30years [J]. Journal of Lake Sciences, 2019, 31(6): 1510-1524.
[3]
Pepe M, Giardino C, Borsani G, et al. Relationship between apparent optical properties and photosynthetic pigments in the sub-alpine Lake Iseo [J]. Science of the Total Environment, 2001, 268(1-3): 31-45.
[4]
高阳俊, 曹勇, 赵振, 等. 基于叶绿素a分级的东部湖区富营养化标准研究[J]. 环境科学与技术, 2011, 34(S2): 218-220. Gao Y J, Cao Y, Zhao Z, et al. Study on the eutrophication control standard for eastern lake basing on the chlorophyll-aclassification [J]. Environmental Science & Technology, 2011, 34(S2): 218-220.
[5]
吴述园, 葛继稳, 苗文杰, 等. 三峡库区古夫河着生藻类叶绿素a的时空分布特征及其影响因素[J]. 生态学报, 2013, 33(21): 7023-7034. Wu S Y, Ge J W, Miao W J, et al. Spatio-temporal distribution of epilithic algal chlorophyll a in relation to the physicoc hemical factors of Gufu River in Three Gorges Reservoir [J]. Acta Ecologica Sinica, 2013, 33(21): 7023-7034.
[6]
朱广伟, 秦伯强, 张运林, 等. 2005~2017年北部太湖水体叶绿素a和营养盐变化及影响因素[J]. 湖泊科学, 2018, 30(2): 279-295. Zhu G W, Qin B Q, Zhang Y L, et al. Variation and driving factors of nutrients and chlorophyll-a concentrations in northernregion of Lake Taihu, China, 2005~2017[J]. Journal of Lake Sciences, 2018, 30(2): 279-295.
[7]
田时弥, 杨扬, 乔永民, 等. 珠江流域东江干流浮游植物叶绿素a时空分布及与环境因子的关系[J]. 湖泊科学, 2015, 27(1): 31-37. Tian S M, Yang Y, Qiao Y M, et al. Temporal and spatial distribution of phytoplankton chlorophyll-a and its relationships with environmental factors in Dongjiang River, Pearl River basin [J]. Journal of Lake Sciences, 2015, 27(1): 31-37.
[8]
刘佳, 黄清辉, 李建华. 崇明北湖叶绿素a浓度与环境因子的GAM回归分析[J]. 中国环境科学, 2009, 29(12): 1291-1295. Liu J, Huang Q H, Li J H. Analysis of general additive model on the relationships between chlorophyll-a concentrations and environmental factors in Beihu Lake of Chongming Island [J]. China Environmental Science, 2009, 29(12): 1291-1295.
[9]
周慧敏, 冯剑丰, 朱琳. 基于GAM的渤海中部水体叶绿素a环境因子影响分析[J]. 海洋环境科学, 2014, 33(4): 531-536. Zhou H M, Feng J F, Zhu L. Effects of environmental factors on the chlorophyll a in central Bohai Sea with GAM [J]. Marine Environmental Science, 2014, 33(4): 531-536.
[10]
Febrero-Bande M, Gonzalez-Manteiga W. Generalized additive models for functional data [J]. Test, 2013, 22(2): 278-292.
[11]
Pearce J L, Beringer J, Nicholls N, et al. Quantifying the influence of local meteorology on air quality using generalizedadditive models [J]. Atmospheric Environment, 2010, 45(6): 1328-1336.
[12]
Chiswell S M, Zeldis J R, Hadfield M G, et al. Wind-driven upwelling and surface chlorophyll blooms in Greater Cook Strait [J]. New Zealand Journal of Marine and Freshwater Research, 2017, 51(4): 465-489.
[13]
Murakami H, Ishizaka J, Kawamura H. ADEOS observations of chlorophyll a concentration, sea surface temperature, and wind stress change in the equatorial Pacific during the 1997 El Nio onset [J]. Journal of Geophysical Research: Earth Surface, 2000, 105(C8): 19551-19559.
[14]
张智渊, 牛远, 余辉, 等. 基于GAM模型的太湖叶绿素a含量与环境因子相关性分析[J]. 环境科学研究, 2018, 31(5): 886-892. Zhang Z Y, Niu Y, Yu H, et al. Relationship of chlorophyll-a content and environmental factors in Lake Taihu based on GAM model [J]. Research of Environmental Sciences, 2018, 31(5): 886-892.
[15]
郭亮, 苏婧, 纪丹凤, 等. 基于GAM模型的太湖叶绿素a与营养盐相关性研究[J]. 环境工程技术学报, 2017, 7(5): 565-572. Guo L, Su J, Ji D F, et al. Relationship of chlorophyll-a and nutrients in Taihu Lake based on GAM model [J]. Journal of Environmental Engineering Technology, 2017, 7(5): 565-572.
[16]
赵娜, 王霄鹏, 李咏沙, 等. 黄渤海海域叶绿素a浓度时空特征分布及影响因子分析[J]. 科学技术与工程, 2020, 20(17): 7101-7107. Zhao N, Wang X P, Li Y S, et al. Temporal-spatial distribution of chlorophyll-a and impacts of environmental factors in the Bohai Sea and Yellow Sea [J]. Science Technology and Engineering. 2020, 20(17): 7101-7107.
[17]
Cui M, Zhou J X, Huang B. Benefit evaluation of wetlands resource with different modes of protection and utilization in the Dongting Lake region [J]. Procedia Environmental Sciences, 2012, 13(10): 2-17.
[18]
Watanabe T N. Role of flood storage ability of lakes in the Changjiang River catchment [J]. Global and Planetary Change, 2008, 63(1): 9-22.
[19]
黄代中, 李芬芳, 欧阳美凤, 等. 洞庭湖不同形态氮, 磷和叶绿素a浓度的时空分布特征[J]. 生态环境学报, 2019, 28(8): 1674-1682. Huang D Z, Li F F, OuYang M F, et al. Temporal and spatial distributions of different forms of nitrogen and phosphorus as well as Chl-a concentration in Dongting Lake [J]. Ecology and Environmental Sciences, 2019, 28(8): 1674-1682.
[20]
黄代中, 万群, 李利强, 等. 洞庭湖近20年水质与富营养化状态变化[J]. 环境科学研究, 2013, 26(1): 27-33. Huang D Z, Wan Q, Li L Q, et al. Changes of water quality and eutrophic state in recent 20years of Dongting Lake [J]. Research of Environmental Sciences, 2013, 26(1): 27-33.
[21]
张光贵. 洞庭湖水体叶绿素a时空分布及与环境因子的相关性[J]. 中国环境监测, 2016, 32(4): 84-90. Zhang G G. Spatial-temporal distribution of chlorophyll-a and its correlation with environment factors in Dongting Lake [J]. Environmental Monitoring in China, 2016, 32(4): 84-90.
[22]
李胜男, 熊丽萍, 彭华, 等. 东洞庭湖浮游藻类粒级结构组成及其关键影响因子[J]. 湖泊科学, 2020, 32(5): 285-295. Li S N, Xiong L P, Peng H, et al. Size-structure of phytoplankton biomass and driving factors in east Lake Dongting [J]. Journal of Lake Sciences, 2020, 32(5): 285-295.
[23]
国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. Editorial Board of Water and Wastewater Monitoring and Analysis Method, State Environmental Protection Administration. Water and wastewater monitoring and analysis method [M]. 4Edition. Beijing: China Environmental Science Publishing House, 2002.
[24]
GB/T3838-2002 地表水环境质量[S]. GB/T3838-2002 Environmental quality standards for surface water [S].
[25]
王丑明, 吴可方, 张屹, 等. 洞庭湖浮游植物时空变化特征及影响因素分析[J]. 淡水渔业, 2018, (4): 52-57. Wang C M, Wu K F, Zhang Y, et al. The analysis of spatial and temporal variations characteristics and driving factors of phytoplankton in Dongting Lake [J]. Freshwater Fisheries, 2018, (4): 52-57.
[26]
Wang X, Zheng B, Liu L S, et al. Development and evaluation of the Lake Multi-biotic Integrity Index for Dongting Lake, China [J]. Journal of Limnology, 2015, 74(3): 594-605.
[27]
熊剑, 喻方琴, 田琪, 等. 近30年来洞庭湖水质营养状况演变特征分析[J]. 湖泊科学, 2016, 28(6): 1217-1225. Xiong J, Yu F Q, Tian Q, et al. The evolution of water quality and nutrient condition in Lake Dongting in recent 30 years [J]. Journal of Lake Sciences, 2016, 28(6): 1217-1225.
[28]
汪星, 刘录三, 李黎, 等. 镜泊湖浮游藻类组成及其与环境因子的相关分析[J]. 中国环境科学, 2015, 35(11): 3403-3413. Wang X, Liu L S, Li L, et al. Correlation analysis of algae composition and environmental factors in Jingpo Lake [J]. China Environmental Science, 2015, 35(11): 3403-3413.
[29]
Arhonditsis G B, Winder M, Brett M T, et al. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA) [J]. Water Research, 2004, 38(18): 4013-4027.
[30]
Yang B, Jiang Y J, He W, et al. The tempo-spatial variations of phytoplankton diversities and their correlation with trophicstate levels in a large eutrophic Chinese lake [J]. Ecological Indicators Integrating Monitoring Assessment & Management, 2016, 66(7): 153-162.
[31]
汪星, 李利强, 郑丙辉, 等. 洞庭湖浮游藻类功能群的组成特征及其影响因素研究[J]. 中国环境科学, 2016, 36(12): 3766-76. Wang X, Li L Q, Zheng B H, et al. Composition and influential factors of algal function groups in Dongting Lake [J]. China Environmental Science, 2016, 36(12): 3766-3776.
[32]
汪婷婷, 杨正健, 刘德富. 香溪河库湾不同季节叶绿素a浓度影响因子分析[J]. 水生态学杂志, 2018, 39(3): 14-21. Wang T T, Yang Z J, Liu D F. Seasonal distribution of chlorophyll-a in Xiangxi Bay of Three Gorges Reservoir and relationship to environment factors [J]. Journal of Hydroecology, 2018, 39(3): 14-21.
[33]
Kalff J. Limnology: Inland water ecosystems [M]. New Jersey: Prentice, 2002.
[34]
毕京博, 郑俊, 沈玉凤, 等. 南太湖入湖口叶绿素a时空变化及其与环境因子的关系[J]. 水生态学杂志, 2012, 33(6): 7-13. Bi J B, Zheng J, Shen Y F, et al. Spatial-temporal characteristics of chlorophyll-a concentration and its relationship with environmental factors in the inlets of South Taihu Lake [J]. Journal of Hydroecology, 2012, 33(6): 7-13.
[35]
李秋华, 林秋奇, 韩博平. 广东大中型水库电导率分布特征及其受N、P营养盐的影响[J]. 生态环境, 2005, (1): 16-20. Li Q H, Lin Q Q, Han B P. Conductivity distribution of water supply reservoirs in Guangdong province [J]. Ecology and Environment, 2005, (1): 16-20.
[36]
Liu X, Li Y L, Liu BG, et al. Cyanobacteria in the complex river-connected Poyang Lake: horizontal distribution and tRansport [J]. Hydrobiology, 2016, 768: 95-110.
[37]
钱奎梅, 刘宝贵, 陈宇炜. 鄱阳湖浮游植物功能群的长期变化特征(2009~2016年) [J]. 湖泊科学, 31(4): 1035-1044. Qian K M, Liu B G, Chen Y W. Long term dynamics of phytoplankton functional groups in Lake Poyang during 2009~2016 [J]. Journal of Lake Sciences, 31(4): 1035-1044.
[38]
Paerl H W. Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world [J]. Life, 2014, 4(4): 988-1012.
[39]
许海, 陈洁, 朱广伟, 等. 水体氮、磷营养盐水平对蓝藻优势形成的影响[J]. 湖泊科学, 2019, 31(5): 1239-1247. Xu H, Chen J, ZHU G W, et al. ncentrations of phosphorus and nitrogen on the dominance of cyanobacteria [J]. Journal of Lake Sciences, 2019, 31(5): 1239-1247.
[40]
王震, 邹华, 杨桂军, 等. 太湖叶绿素a的时空分布特征及其与环境因子的相关关系[J]. 湖泊科学, 2014, 26(4): 567-575. Wang Z, Zhou H, Yang G J, et al. Spatial-temporal characteristics of chlorophyll-a and its relationship with environmental factors in Lake Taihu [J]. Journal of Lake Sciences, 2014, 26(4): 567-575.
[41]
Liu X, Lu X, Chen Y. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu China: An 11-year investigation [J]. Harmful Algae, 2011, 10(3): 337-343.
[42]
Bulgakov N G, Levich A. The nitrogen: phosphorus ratio as a factor regulating phytoplankton community structure: nutriantratios [J]. Archiv für Hydrobiologie, 1999, 146(1): 3-22.